Electronic supplementary information

2,2'-Biphen[*n*]arenes (*n* = 4–8): one-step, high-yield

synthesis and host-guest properties

Lu Dai, Zhi-Jun Ding, Lei Cui, Jian Li, Xueshun Jia, and Chunju Li

Contents

1.	Materials and methods.	S2
2.	Synthesis of 2,2'-EtBPns.	S2
3.	Copies of ¹ H NMR and ¹³ C NMR spectra of the new macrocycles.	S 4
4.	VT ¹ H NMR spectra of 2,2'-EtBP4 and 2,2'-EtBP8 .	S 9
5.	Additional ¹ H NMR spectra of host-guest mixture.	S 11
6.	Molar ratio plots and determination of K_a .	S14
7.	References.	S20

Experimental

Materials and methods

Organic cationic guests 1^+-4^{2+} with tetrakis[3,5-bis(trifluoromethyl)phenyl]borate counter anions were prepared from their chloride or bromide salts using our previously reported methods.^[S1] ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AV500 instrument. High-resolution mass spectra (HRMS) were recorded on a Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS instrument. Melting points were obtained on an X-4 digital melting point apparatus without correction.

Synthesis of 2,2'-EtBPns

To the solution of 2,2'-diethoxybiphenyl (4.8 g, 20 mmol) in CH₂ClCH₂Cl (200 mL) was added paraformaldehyde (0.90 g, 30 mmol). Boron trifluoride diethyl etherate (5.0 ml, 40 mmol) was then added to the reaction mixture. The mixture was stirred at 25 °C for 30 minutes. Then the reaction was quenched by addition of 100 mL water. The organic phase was separated and washed with saturated aqueous NaHCO₃, and water. The organic layer was dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (eluent: 10/1, v/v, Petroleum ether: ethyl acetate gradually changing to 2/1) to afford 2,2'-EtBP4 (0.80 g, 16%), 2,2'-EtBP5 (0.72 g, 14%), 2,2'-EtBP6 (0.42 g, 8.4%), 2,2'-EtBP7 (0.32 g, 6.4%), and **2,2'-EtBP8** (0.30 g, 5.9%) as white solids.

2,2'-EtBP4. m.p.108–110 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.14–6.98 (m, 16H), 6.80 (d, J = 8.3 Hz, 8H), 3.91 (q, J = 7.0 Hz, 16H), 3.85 (s, 8H), 1.18 (t, J = 7.0Hz, 24H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm): 154.8, 133.2, 132.3, 128.5, 128.3, 112.3 (C of biphenyl), 64.1 (C of methylene in ethoxy group), 40.4 (C of methylene bridge) 14.9 (C of methyl in ethoxy group). HRMS (ESI): C₆₈H₇₂O₈Na⁺, calcd m/z 1039.5104; found m/z 1039.5117.

2,2'-EtBP5. m.p.86–88 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.10–6.98 (m, 20H), 6.78 (d, J = 8.3 Hz, 10H), 3.86 (dd, J = 13.9, 6.9 Hz, 30H), 1.13 (t, J = 7.0Hz,30H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm): 154.7, 133.1, 132.3, 128.4, 128.0, 112.4 (C of biphenyl), 64.0 (C of methylene in ethoxy group), 40.5 (C of methylene bridge), 14.8 (C of methyl in ethoxy group). HRMS (ESI): $C_{85}H_{90}O_{10}Na^+$, calcd m/z 1293.6405; found m/z 1293.6234.

2,2'-EtBP6. m.p. 90–92 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.08 (d, J = 2.2 Hz, 12H), 7.03 (dd, J = 8.3, 2.2 Hz, 12H), 6.78 (d, J = 8.4 Hz, 12H), 3.85 (dd, J = 13.6, 6.6 Hz, 36H), 1.12 (t, J = 7.0 Hz, 36H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm): 154.6, 133.1, 132.4, 128.4, 128.0, 112.4 (C of biphenyl), 64.0 (C of methylene in ethoxy group), 40.4 (C of methylene bridge), 14.8 (C of methyl in ethoxy group). HRMS (ESI): C₁₀₂H₁₀₈O₁₂Na⁺, calcd m/z 1547.7706; found m/z 1547.7764.

2,2'-EtBP7. m.p.97–100 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.09 (d, J = 2.2 Hz, 14H), 7.03 (dd, J = 8.3, 2.2 Hz, 14H), 6.78 (d, J = 8.4 Hz, 14H), 3.85 (dd, J = 13.8, 6.8 Hz, 42H), 1.12 (t, J = 7.0 Hz, 42H).¹³C NMR (125 MHz, CDCl₃): δ (ppm): 154.6, 133.1, 132.3, 128.4, 127.9, 112.4 (C of biphenyl), 63.98 (C of methylene in ethoxy group), 40.4 (C of methylene bridge), 14.8 (C of methyl in ethoxy group). HRMS (ESI): C₁₁₉H₁₂₆O₁₄Na⁺, calcd m/z 1802.9079; found m/z 1802.9056.

2,2'-EtBP8. m.p. 92–95 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm): 7.10 (d, J = 2.2 Hz, 16H), 7.03 (dd, J = 8.4, 2.2 Hz, 16H), 6.78 (d, J = 8.4 Hz, 16H), 3.86 (dd, J = 13.9, 6.9 Hz, 48H), 1.12 (t, J = 7.0 Hz, 48H). ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 154.6, 133.1, 132.4, 128.4, 128.0, 112.4 (C of biphenyl), 64.0 (C of methylene in ethoxy group), 40.4 (C of methylene bridge), 14.8 (C of methyl in ethoxy group). HRMS (ESI): C₁₃₆H₁₄₄O₁₆NH₄⁺, calcd m/z 2052.0832; found m/z 2052.0833.

Copies of ¹H NMR and ¹³C NMR spectra of the new macrocycles.

Figure S1. ¹H NMR spectrum (500 MHz) of 2,2'-EtBP4 in CDCl₃

Figure S2. ¹³C NMR spectrum (125 MHz) of 2,2'-EtBP4 in CDCl₃

Figure S3. ¹H NMR spectrum (500 MHz) of 2,2'-EtBP5 in CDCl₃

Figure S4. ¹³C NMR spectrum (125 MHz) of 2,2'-EtBP5 in CDCl₃

Figure S5. ¹H NMR spectrum (500 MHz) of 2,2'-EtBP6 in CDCl₃

Figure S6. ¹³C NMR spectrum (125 MHz) of 2,2'-EtBP6 in CDCl₃.

Figure S7. ¹H NMR spectrum (500 MHz) of 2,2'-EtBP7 in CDCl₃.

Figure S8. ¹³C NMR spectrum (125 MHz) of 2,2'-EtBP7 in CDCl₃.

Figure S9. ¹H NMR spectrum (500 MHz) of 2,2'-EtBP8 in CDCl₃.

Figure S10. ¹³C NMR spectrum (125 MHz) of 2,2'-EtBP8 in CDCl₃.

VT ¹H NMR spectra of 2,2'-EtBP4 and 2,2'-EtBP8.

Figure S11. VT ¹H NMR spectra of **2,2'-EtBP4** in toluene- d_8 in the temperature range from -60 °C to 100 °C.

Figure S12. VT ¹H NMR spectra of **2,2'-EtBP8** in toluene- d_8 in the temperature range from -60 °C to 100 °C.

Additional ¹H NMR spectra of host-guest mixture.

Figure S13. ¹H NMR spectra (500 MHz, 298 K) of **2**⁺ (2.0 mM) in CD₂Cl₂ in the absence (A) and presence of ~1.0 equiv. of **2,2'-EtBP4** (B), **2,2'-EtBP5** (C), **2,2'-EtBP6** (D), **2,2'-EtBP7** (E), and **2,2'-EtBP8** (F).

absence (A) and presence of ~1.0 equiv. of 2,2'-EtBP4 (B), 2,2'-EtBP5 (C), 2,2'-EtBP6 (D), 2,2'-EtBP7 (E), and 2,2'-EtBP8 (F).

Figure S15. ¹H NMR spectra (500 MHz, 298 K) of 4²⁺ (2.0 mM) in CD₂Cl₂ in the absence (A) and presence of ~1.0 equiv. of **2,2'-EtBP4** (B), **2,2'-EtBP5** (C), **2,2'-EtBP6** (D), **2,2'-EtBP7** (E), and **2,2'-EtBP8** (F).

Molar ratio plots and determination of K_{a} .

In the present host-guest systems, chemical exchange is fast on the NMR time scale. To determine the association constants (K_a), ¹H NMR titrations were performed in CD₂Cl₂ with solutions which had a constant concentration of 2,2'-EtBP*n* host and varying concentrations of guest. Assuming 1 : 1 binding stoichiometry between 2,2'-EtBP*n*s and these guests, the K_a values could be calculated by analyzing the sequential changes in chemical shift changes of 2,2'-EtBP*n* host that occurred with changes in guest concentration by using the nonlinear curve-fitting method from the following equation^[S2]:

 $A = (A_{\infty}/[H]_{0}) (0.5[G]_{0} + 0.5([H]_{0} + 1/K_{a}) - (0.5 ([G]_{0})^{2} + (2[G]_{0}(1/K_{a} - [H]_{0})) + (1/K_{a} + [H]_{0})^{2})^{0.5}))$

Where *A* is the chemical shift change of aromatic protons on 2,2'-EtBP*n* host at $[G]_0$, A_{∞} is the chemical shift change when the host is completely complexed, $[H]_0$ is the fixed initial concentration of the 2,2'-EtBP*n* host, and $[G]_0$ is the initial concentration of guest.

For each host–guest pair examined, the plot of $\Delta\delta$ as a function of [G]₀ gave an excellent fit (Figure S16~S20), verifying the validity of the 1:1 binding stoichiometry assumed. Additionally, mole ratio plots were also made (Figure S21~25); they proved consistent with the proposed 1 : 1 host–guest binding stoichiometry.

Figure S16. The non-linear curve-fitting (NMR titrations) for the complexation of **2,2'-EtBP4** (2.0×10^{-4} mol/L) with and guest **1**⁺ in CD₂Cl₂ at 298 K.

Figure S17. The non-linear curve-fitting (NMR titrations) for the complexation of **2,2'-EtBP5** (2.0×10^{-4} mol/L) with and guest **1**⁺ in CD₂Cl₂ at 298 K.

Figure S18. The non-linear curve-fitting (NMR titrations) for the complexation of **2,2'-EtBP6** (2.0×10^{-4} mol/L) with and guest **1**⁺ in CD₂Cl₂ at 298 K.

Figure S19. The non-linear curve-fitting (NMR titrations) for the complexation of **2,2'-EtBP7** (2.0×10^{-4} mol/L) with and guest **1**⁺ in CD₂Cl₂ at 298 K.

Figure S20. The non-linear curve-fitting (NMR titrations) for the complexation of **2,2'-EtBP8** (2.0×10^{-4} mol/L) with and guest **1**⁺ in CD₂Cl₂ at 298 K.

Figure S21. Mole ratio plot for **2,2'-EtBP4** and **1**⁺ from ¹H NMR (500 MHz, 298 K) experiments, wherein **2,2'-EtBP4** (at a fixed concentration) in CD₂Cl₂ was treated different molar equivalents of **1**⁺. The results are consistent with a 1 : 1 binding stoichiometry.

Figure S22. Mole ratio plot for **2,2'-EtBP5** and **1**⁺ from ¹H NMR (500 MHz, 298 K) experiments, wherein **2,2'-EtBP5** (at a fixed concentration) in CD₂Cl₂ was treated different molar equivalents of **1**⁺. The results are consistent with a 1 : 1 binding stoichiometry.

Figure S23. Mole ratio plot for **2,2'-EtBP6** and **1**⁺ from ¹H NMR (500 MHz, 298 K) experiments, wherein **2,2'-EtBP6** (at a fixed concentration) in CD₂Cl₂ was treated different molar equivalents of **1**⁺. The results are consistent with a 1 : 1 binding stoichiometry.

Figure S24. Mole ratio plot for 2,2'-EtBP7 and 1^+ from ¹H NMR (500 MHz, 298 K) experiments, wherein 2,2'-EtBP7 (at a fixed concentration) in CD₂Cl₂ was treated different molar equivalents of 1^+ . The results are consistent with a 1 : 1 binding stoichiometry.

Figure S25. Mole ratio plot for **2,2'-EtBP8** and **1**⁺ from ¹H NMR (500 MHz, 298 K) experiments, wherein **2,2'-EtBP8** (at a fixed concentration) in CD₂Cl₂ was treated different molar equivalents of **1**⁺. The results are consistent with a 1 : 1 binding stoichiometry.

References.

- [S1] C. Li, X. Shu, J. Li, J. Fan, Z. Chen, L. Weng and X. Jia Org. Lett., 2012, 14, 4126–4129.
- [S2] a) K. A. Connors, Binding Constants; Wiley: New York, 1987. Corbin, P. S. Ph.D.
 Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1999; b) R. P.
 Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi,
 F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi , D. J.
 Williams, J. Am. Chem. Soc., 1996, 118, 4931–4951; c) Y. Inoue, K. Yamamoto, T.
 Wada, S. Everitt, X.-M. Gao, Z.-J. Hou, L.-H. Tong, S.-K. Jiang, H.-M. Wu, J. Chem.
 Soc., Perkin Trans. 2, 1998, 1807–1816.