Photoinduced, Copper-Catalyzed Three Components Cyanofluoroalkylation of Alkenes with Fluoroalkyl Iodides as Fluoroalkylation Reagents

Quanping Guo, Mengran Wang, Yanfang Wang, Zhaoqing Xu*,

and Rui Wang*

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, The Institute

of Pharmacology, School of Basic Medical Science, Lanzhou University, 199 West

Donggang Road, Lanzhou 730000, China.

E-mail: zqxu@lzu.edu.cn, wangrui@lzu.edu.cn

Supporting Information

Table of Content:	
1. General information	S2
2. General procedure for the synthesis of alkenes	S2
3. General procedure for the cyanofluoroalkylation of alkenes	S 4
4. Synthetic applications	S 8
5. The mechanistic study	S 8
6. References	S13
7. Characterization of products	S14
8. X-ray structure of 6e	S26
9. NMR spectra of new compounds	S27

1. General information

Unless stated otherwise, all reactions were carried out under an argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ¹H NMR, ¹³C NMR, ¹⁹F NMR, and ³¹P NMR spectra were recorded on a Varian instrument (300 MHz, 75 MHz, 282 MHz, and 121 MHz) spectrometer in CDCl₃ using tetramethylsilane (TMS) as internal standard unless otherwise noted. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, q = quartet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR, ¹⁹F NMR and ³¹P NMR are reported in terms of chemical shift (δ , ppm). High resolution mass spectra (HRMS) were obtained by the ESI or EI ionization sources.

Materials: $Cu(OAc)_2$ was prepared from $Cu(OAc)_2$. H_2O by refluxing in acetic anhydride and washed with dry Et₂O. All other reagents were commercially available and used as received.

2. General procedure for the synthesis of alkenes

2.1 General procedure for the synthesis of alkenes 2a-2p.¹

In a 100 mL round bottomed flask equipped with a stir bar, methyltriphenylphosphonium bromide (12 mmol, 1.2 equiv) were dissolved with 50 mL THF under Ar atmosphere, *n*-BuLi (2.5 mol/L, 12mmol, 1.2 equiv) were added dropwise under 0 °C, the mixture was stirred for 15 minutes. Aldehyde (10.0 mmol) was dissolved with THF, which was added into reaction, and the mixture continues to stir for 1 h under 0 °C. After the reaction mixture was stirred at room temperature for another 9 h, the mixture was quenched with water and extracted with diethyl ether. The combine organic layer was washed with H₂O and brine ,and dried over by Na₂SO₄. The solvent was removed under reduced pressure, and the residue was chromatographed (*n*-hexane) by silica gel column to give alkenes **2a-2p**.

2.2 General procedure for the synthesis of alkene 2g.²

In a 100 mL round bottomed flask equipped with a stir bar, methyltriphenylphosphonium bromide (12 mmol, 1.2 equiv) and K_2CO_3 (20 mmol, 2 equiv) were dissolved with 20 mL 1,4-dioxane, aldehyde (10 mmol) was dissolved with 1,4-dioxane, which was added into the reaction mixture. After the reaction mixture was heated to reflux (110 °C) overnight, the mixture was cooled to room temperature, quenched with water, and extracted with diethyl ether. The combine organic layer was washed with H₂O and brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure, and the residue was chromatographed (*n*-hexane) by silica gel column to give alkene **2g**.

2.3 General procedure for the synthesis of alkene 5e.³

In a 50 ml round bottomed flask equipped with a stir bar, isoindoline-1,3-dione (5 mmol) and K_2CO_3 (6.5 mmol, 1.3 equiv) was dissolved with 15 mL DMF. Allyl bromide (6.5 mmol, 1.3 equiv) was added dropwise into the mixture. After the reaction was completed by TLC monitoring, and the reaction mixture was quenched with water and extracted with DCM, washed with brine, and dried over Na₂SO₄, the solvent was removed under reduced pressure, and the residue was chromatographed by silica gel column to give **5e**.

2.4 General procedure for the synthesis of 5j.⁴

1) A mixture of estrone (5 mmol) dissolved in 30 mL DCM was added Et_3N (10 mmol, 2 equiv). Trifluoromethanesulfonic anhydride (5.5 mmol, 1.1 equiv) was added dropwise no less than 9 minutes into the mixture under 0 °C. The reaction mixture was stirred at room temperature for 3 h. The resulting mixture was extracted with DCM, washed with sat. NH₄Cl. The organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was directly used in the next step without further purification.

2) The previous crude product, potassium vinyltrifluoroborate (5 mmol), $PdCl_2$ (0.1 mmol, 0.02 equiv), Ph_3P (0.3 mmol, 0.06 equiv), H_2O (0.6 ml), and $CsCO_3$ (15 mmol, 3 equiv) were combined in an oven-dried sealing tube. The vessel was evacuated and backfilled with N_2 (repeated for 3 times), THF (20 mL) were added *via* syringe. The tube was sealed with a Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 85 °C for 19 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentrated under vacuum and purified by flash column chromatography on silica gel (PE: EA = 5:1) to give the product **5j**.

3. General procedures for the cyanofluoroalkylation of alkenes.

3.1 Optimization of reaction conditions

IC₄F ₉	+		+	TMSCN	catalyst (10 mol %) DIPEA (3 equiv) 25-W, 254 nm UVC	CN C ₄ F ₉	+C4F9
3 equiv		1 equiv		3 equiv	CH ₃ CN, N ₂ , 2 h	4a	4aa

Table S1.	Cataly	sts scre	ening ^a
-----------	--------	----------	--------------------

Entry	Catalyst	Yield (4a / 4aa) (%) ^b	aa) (%) ^b Entry Ca		Yield (4a/4aa) (%) ^b
1	CuI	31/0	10	CuF ₂	65/0
2 ^c	CuI	61/0	11	CuF ₂ .H ₂ O	67/0
3	CuCl	61/0	12	CuCl ₂ .H ₂ O	63/0
4	CuBr	64/0	13	Cu(OH) ₂	68/0
5	Cu(MeCN) ₄ PF ₆	57/0	14	$CuSO_4$	67/0
6	Cu ₂ O	65/0	15	Fe(OTf) ₃	0
7	Cu(OTf) ₂	59/0	16	Fe(acac) ₃	0
8	$Cu(OAc)_2$	87/0	17	Ni(OTf) ₂	0
9	Cu(acac) ₂	61/0	18	Ni(NO ₃) ₂ (H ₂ O) ₆	11/5

^aUnless otherwise noted, the reactions were carried out by using **2a** (0.1 mmol), **1a** (3.0 equiv), **3**(3 equiv), amine (3 equiv), solvent (1.0 mL), catalyst (10 mol %), under N₂, and stirred at rt for 2 h under UV light irradiation (25-W UVC (254 nm) compact fluorescent light bulb). ^bBased on ¹H NMR analysis using anisole as an internal standard. ^c2 equiv of H₂O was added here and after.

C ₄ F ₉ I +	יד + דו	MSCN Cu(OAc) ₂ (10 mol %) 25-W, 254 nm UVC H ₂ O (2 equiv), CH ₃ CN, N ₂ , 2 h	CN 4a	-C ₄ F ₉ + 4aa	∠C ₄ F ₉
Entry	Amine	Yield (4a/4aa) (%) ^b	Entry	Amine	Yield (4a/4aa) (%) ^b
1	Et ₃ N	61/0	5	TMEDA	30/0
2	DBU	38/0	6	phenylamine	4/30
3	pyridine	9/22	7	DMAP	40/0
4	Et ₂ NH	66/0	8	DABCO	64/0

Table S2. Amines screening.^a

^a0.1 mmol scale. ^bBased on ¹H NMR analysis using anisole as an internal standard.

Table S3. Solvents screening^a

C ₄ F ₉ l +	+	TMSCN Cu(OAc) ₂ DIPEA 25-W, 25- H ₂ O (2 equ	vent (10 mol %) (3 equiv) 4 nm UVC uiv), N ₂ , 2 h	CN C ₄ F ₉ 4a	+ C ₄ F ₉ 4aa
Entry	Solvent	Yield (4a/4aa) (%) ^b	Entry	Solvent	Yield (4a / 5) (%) ^b
1	DMF	28/0	5	acetone	21/2
2	THF	3/0	6	DCM	28/0
3	DMSO	55/0	7	1,4-dioxane	25/3
4	H_2O	3/0	8	toluene	5/5

^a0.1 mmol scale. ^bBased on ¹H NMR analysis using anisole as an internal standard.

				Cu(OAc) ₂ (10 mol %) 25-W, 254 nm UVC	CN I $\downarrow C_4F_9$ $\downarrow C_4F_9$
IC ₄ F 1a	- ₉ +	2a	- TMSCN 3a	DIPEA (3 equiv) H ₂ O (2 equiv) $CH_3CN, N_2, 2 h$	+ 4aa
				standard conditions ^a	
	entry	cl	nange from t	he "standard conditions"	yield (4a/4aa) (%) ^b
	1			no change	87/0
	2		nc	0	
	3			0	
	4			0/12	
	5			0	
	6			1a (1.0 equiv)	29/0
	7			1a (2.0 equiv)	48/0
	8			3a (1.0 equiv)	24/0
	9			3a (2.0 equiv)	45/0
	10		DI	PEA (1.0 equiv)	15/0
	11		DI	PEA (2.0 equiv)	40/0
	12 ^c		DI	PEA (4.0 equiv)	92(91)/0
	13		5	mol % of Cu(OAc) ₂	65/0
	14		365 nm UV	C instead of 254 nm UVC	19/0

Table S4. Control experiments:

^aStandard conditions were carried out by using **2a** (0.1 mmol), **1a** (3.0 equiv), Cu(OAc)₂ (10 mol %), DIPEA (3.0 equiv), H₂O (2 equiv), CH₃CN (1ml), under Ar, and stirred at rt for 2 h under UV light irradiation. ^bBased on ¹H NMR analysis using anisole as an internal standard. ^cIsolated yields in para.

3.2 General procedures of the cyanofluoroalkylation of alkenes

To an oven-dried 10 mL quartz test tube with a magnetic stirring bar was added $Cu(OAc)_2$ (0.04 mmol, 10 mol %). Then, air was withdrawn and backfilled with Ar (three times). Perfluoroalkyl iodide (R_fI, 1.2 mmol, 3 equiv), alkene (0.4 mmol) and trimethylsilyl cyanide (TMSCN, 1.2 mmol, 3 equiv), 4 mL of CH₃CN, ethyldiisopropylamine (DIPEA, 1.6 mmol, 4 equiv), H₂O (0.8 mmol, 2 equiv) were added in turn by syringe. Thereafter, the test tube was transferred to a UV photoreactor (25W, see Scheme S1 for details), where it was irradiated at 254 nm for 2 h. Two hours later, the reaction was quenched with water (2 mL), extracted with DCM, dried over anhydrous sodium sulfate, concentrated in *vacuo* and purified by column chromatography (*n*-hexane/dichloromethane 20:1-5:1) to afford the product.

For CF₃I, an oven-dried 10 mL quartz test tube with a magnetic stirring bar was added Cu(OAc)₂ (0.04 mmol, 10 mol %), air was withdrawn and backfilled with Ar (three times). The mixture was cooled to -78°C, trifluoromethyl iodide (1.2 mmol, 3 equiv) was condensed and added to the above mixture via a Dewar type condenser fitted with an 18-gauge needle. Then, alkene (0.4 mmol) and trimethylsilyl cyanide (TMSCN, 1.2 mmol, 3 equiv), 4 mL of CH₃CN, ethyldiisopropylamine (DIPEA, 1.6 mmol, 4 equiv), H₂O (0.8 mmol, 2 equiv) were added in turn by syringe. Thereafter, the test tube was transferred to a UV photoreactor (25W, see Scheme S1 for details), where it was irradiated at 254 nm for 2 h. Two hours later, the reaction was quenched with water (2 mL), extracted with DCM, dried over anhydrous sodium sulfate. concentrated in vacuo and purified by column chromatography (*n*-hexane/dichloromethane 20:1-5:1) to afford the product.

Scheme S1. Placement of CFL around quartz test tube.

Instructions on placement of CFL: One 25-W UVC compact fluorescent light bulb was placed next to the quartz test tube and the distance was about 7 cm. A cardboard box lined with tin foil was placed over the lamps and stir plate. In one side of the cardboard box, part of the side was cut out, and a high-speed fan was setup for dissipating heat.

4. Synthetic applications.⁵

BH₃.THF (1.8 mmol) was added to a solution of **4a** (0.6 mmol) in dry THF (2 mL) at room temperature under an atmosphere of N₂, and then refluxed for 3 h. The reaction was quenched by the dropwise addition of 6M aqueous HCl (1 mL). After refluxing for a further 2 h, the solution was made basic with 6M aqueous NaOH, then extracted three times with DCM. The combined extracts were dried over Na₂SO₄, and the solvent was removed in vacuo. The residue was purified by flash column chromatography to afford the derivative product **9**.

A 10 mL round bottom flask equipped with a stir bar was added **4a**, AcOH (1 mL), H₂O (1 mL), H₂SO₄ (1 mL), and heated to 120°C for 1 h. Then, refluxed for 6 h. The resulting mixture was cooled to room temperature; sodium hydroxide was used to adjust pH to 14. The suspension was diluted with H₂O until all the solids dissolved. The solution was washed with EtOAc (2×20 ml). The hydrochloric acid was added dropwise until pH = 1. The resulting mixture was extracted with EtOAc (3×20 ml), washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*. The crude material was purified by flash chromatography on silica gel to afford derivative product **10**.

5. The mechanistic study

5.1 Radical inhibition experiments

In order to gain some information on the reaction mechanism, radical inhibition experiments were examined. When radical scavenger TEMPO (2,2,6,6-tetromethyl-1-piperidinyloxy, 4.0 equiv) was added under the standard conditions, the reaction was completely suppressed (eq 1). No **4a** was detected and TEMPO-C₄F₉ product **11** was isolated by column chromatography gave 45% yield. Addition of butylated hydroxytoluene (BHT) led to a dramatic decrease of the yield (eq 2). These results indicated that a radical pathway could be involved. Which suggested that a radical pathway was involved in the current reaction.

HRMS-ESI

2,2,6,6-tetramethyl-1-(perfluorobutoxy)piperidine (16), Colorless liquid; **¹H NMR** (300 MHz, CDCl₃) δ 1.57 (s, 6H), 1.18 (s, 12H). **¹³C NMR** (75 MHz, CDCl₃) δ 61.88, 40.42, 33.43, 20.63, 16.78. **¹⁹F NMR** (282 MHz, CDCl₃) δ -78.84 (t, J = 5.4 Hz, 2F), -81.04 (t, J = 9.9 Hz, 3F), -124.52—124.64 (m, 2F), -126.10 (d, J = 3.4 Hz, 2F). **HRMS (ESI):** C₁₃H₁₈F₉NO+Na⁺ Calcd: 398.2630, Found: 398.2402.

5.2 Control experiments

To further prove the reaction as a multicomponent reaction, control experiment was carried out. Under the standard conditions, in the absence of TMSCN, no iodoperfluorobutylation product could be observed, and the *p*-methylstyrene (2a) was mostly consumed, thus questioning vinyl iodides as effective intermediates in these transformations.

¹H NMR of *p*-methylstyrene (2a)

Crude ¹H NMR of standard reaction

Crude ¹H NMR (under the standard conditions, in the absence of TMSCN)

To explore the influence of DIPEA in the reaction, control experiment was carried out. Under the standard conditions, in the absence of DIPEA, no 4a were observed, whereas the iodoperfluoroalkylation product 4aa was obtained in 12% yield and *p*-methylstyrene (2a) was mostly consumed. Furthermore, to explore the influence of bases, a series of inorganic bases were used instead of DIPEA. However, no 4a or 4aa were observed, and *p*-methylstyrene (2a) was mostly consumed. The negative results demonstrated the importance of DIPEA in this reaction.

inorganic bases = *t*-BuOK, *t*-BuONa, *t*-BuOLi, Na₂CO₃, Cs₂CO₃, NaOH, and PhCO₂Na.

Crude ¹H NMR (under the standard conditions, in the absence of DIPEA)

NMR spectra of 4aa

1-methyl-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohexyl)benzene (4aa), colorless liquid; ¹**H NMR** (300 MHz, CDCl₃) δ 7.32 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 3.06–3.39 (m, 2H), 2.32 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 139.84, 138.59, 129.57, 126.55, 42.14 (t, *J* = 20.3 Hz), 21.20, 16.92.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.03 (t, *J* = 8.5 Hz, 3F), -112.10—-115.61 (m, 2F), -124.52 (d, *J* =8.5Hz, 2F), -125.96 (d, *J* =14.1Hz, 2F).

Under standard conditions, **4aa** could react with TMSCN and gave the cross coupling product **4a** in 87% yield.

5.3 Proposed mechanism⁶

Although multiple scenarios can be envisaged, based on these investigations and previous reports, a plausible mechanism was proposed. Firstly, the rapid ligand exchange delivered the Cu^{II} species, which was reduced by the electron rich *tert*-amine and formed an amine radical cation and Cu^{I} . Under UV light irradiation, Cu^{I} was excited to its triplet state $[Cu^{I}]^*$. The following oxidative quenching step converted R_fI into $\cdot R_f$ and Γ along with recycling of Cu^{II} . Meanwhile, $\cdot R_f$ attacked alkene to give the radical intermediate **A**. Then, it reacted with $Cu^{II}(CN)_n$ and formed a Cu^{III} spices **B**. The subsequent reductive elimination provided the desired cyanofluoroalkylation product. It should be noted that both Cu^{I} and Cu^{II} salts showed good catalytic activities. These results indicated that the catalytic cycle could be initiated either from Cu^{II} or Cu^{I} . Unstable species TMS⁺ and Γ undergo rapid hydrolysis and then neutralized by amine, which promoted a completed conversion.

6. References

T. Ramnial, S. A. Taylor, M. L. Bender, B. Gorodetsky, P. T. K. Lee, D. A. Dickie, B. M. McCollum, C. C. Pye, C. J. Walsby, J. A. C. Clyburne, *J. Org. Chem.* 2008, 73, 801.
 J. Zhang, Y. Tang, *Adv. Synth. Catal.* 2016, *358*, 752.
 G. Ding, B. Lu, Y. Li, J. Wan, Z. Zhang, X. Xie, *Adv. Synth. Catal.* 2015, *357*, 1013.
 L. Crespin, L. Biancalana, T. Morack, D. C. Blakemore, S. V. Ley, *Org. Lett.* 2017, *19*, 1084.

5. Y. He, L. Li, Y. Yang, Z. Zhou, H. Hua, X. Liu, Y.-M. Liang, Org. Lett. 2014, 16, 270.
6. a) S. Paria, O. Reiser, ChemCatChem. 2014, 6, 2477. b) O. Reiser, Acc. Chem. Res. 2016, 49, 1990. c) A. C. Hernandez-Perez, S. K. Collins, Acc. Chem. Res. 2016, 49, 1557. d) T. S. Ratani, S. Bachman, G. C. Fu, J. C. Peters, J. Am. Chem. Soc. 2015, 137, 13902. e) A. Baralle, L. Fensterbank, J.-P. Goddard, C. Ollivier, Chem. Eur. J. 2013, 19, 10809. f) B. Michelet, C. Deldaele, S. Kajouj, C. Moucheron, G. Evano, Org. Lett. 2017, 19, 3576.

7. Characterization of products

4,4,5,5,6,6,7,7,7-nonafluoro-2-(*p***-tolyl**)**heptanenitrile** (**4a**), 132.3mg, yield: 91%. White solid, mp 44-45 °C.

¹**H** NMR (300 MHz, CDCl₃) δ 7.25 (q, J = 8.4 Hz, 4H), 4.15 (dd, J = 4.5, 9.8 Hz, 1H), 2.72-2.82 (m, 1H), 2.42-2.61 (m, 1H), 2.37 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 139.09, 130.81, 130.26, 127.06, 118.97, 37.02 (t, *J* = 21.0 Hz), 29.32 (d, *J* = 3.8 Hz), 21.04.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.08—-81.12(m, 3F), -112.85—-113.88 (m, 1F), -114.07— -115.09 (m, 1F), -124.37—-124.47 (m, 2F), -125.93—-126.09 (m, 2F).

HRMS (ESI): C₁₄H₁₀F₉N+Na⁺ Calcd: 386.0562, Found: 386.0566.

4b

4,4,5,5,6,6,7,7,7-nonafluoro-2-phenylheptanenitrile (4b), 121.5mg, yield: 87%. Light yellow liquid

¹**H NMR** (300 MHz, CDCl₃) δ 7.26–7.45 (m, 5H), 4.19 (dd, *J* = 4.5, 9.9 Hz, 1H), 2.75 – 2.95 (m, 1H), 2.33 – 2.64 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 133.78, 129.68, 129.09, 127.22, 118.77, 37.02, 29.73.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.98 (m, 3F), -113.73—-114.03 (m, 2F), -124.36 (dd, J = 12.7, 8.7 Hz, 2F), -125.93 (dd, J = 12.7, 8.7 Hz, 2F).

HRMS (EI): C₁₃H₈F₉N Calcd: 349.0513, Found: 349.0516.

2-(4-(tert-butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptanenitrile (4c), 139.4mg, yield:86%. Light yellow liquid

¹**H** NMR (300 MHz, CDCl₃) δ 7.45 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 4.16 (dd, J = 10.1, 4.2 Hz, 1H), 2.73 - 2.93 (m, 1H), 2.41 - 2.62 (m, 1H), 1.33 (s, 9H).

¹³**C NMR** (75 MHz, CDCl₃) δ 152.29, 130.76, 126.89, 126.60, 118.96, 37.03 (t, *J* = 21 Hz), 34.66, 31.16, 29.21.

19F NMR (282 MHz, CDCl₃) δ -81.11– -81.04 (m, 3F), -112.78– -113.84 (m, 1F), -114.16– -115.22 (m, 1F), -124.44 (d, *J* = 8.5 Hz, 2F), -125.99 (t, *J* = 14.1 Hz, 2F).

HRMS (ESI): C₁₇H₁₆F₉N+Na⁺ Calcd: 428.1031, Found: 428.1037.

4,4,5,5,6,6,7,7,7-nonafluoro-2-(4-methoxyphenyl)heptanenitrile (4d), 130.4mg, yield: 86%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.29 (d, J = 8.2 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 4.15 (dd, J = 9.7, 4.6 Hz, 1H), 3.82 (s, 3H), 2.71–2.92 (m, 1H), 2.41–2.60 (m, 1H).

¹³**C NMR** (75 MHz, CDCl₃) δ 159.99, 128.42, 125.63, 119.07, 114.93, 55.36, 37.04 (t, *J* = 21 Hz), 28.98.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.05– -81.12 (m, 3F), -112.03– -114.05 (m, 1F), -114.35 (dd, *J* =149.2, 136.3 Hz, 1F), -123.17– -125.15 (m, 2F), -126.00 (dd, *J* = 16.0, 7.6 Hz, 2F).

HRMS (ESI): C₁₄H₁₀F₉NO+Na⁺ Calcd: 402.0511, Found: 402.0523.

4e

4,4,5,5,6,6,7,7,7-nonafluoro-2-(4-fluorophenyl)heptanenitrile (4e), 130.7mg, yield: 89%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.36–7.41 (m, 2H), 7.13 (t, *J* = 8.7 Hz, 2H), 4.21 (dd, *J* = 9.7, 4.6 Hz, 1H), 2.74–2.94 (m, 1H), 2.44–2.62 (m, 1H).

¹³**C NMR** (75 MHz, CDCl₃) δ 162.90 (d, *J* = 247.5 Hz), 129.60 (d, *J* = 3.8 Hz), 129.12 (d, *J* = 3.8 Hz), 118.63, 116.69 (d, *J* = 21.8 Hz), 36.88 (t, *J* = 21.0 Hz), 29.09.

¹⁹**F** NMR (282 MHz, CDCl₃) δ -81.17 (t, J = 9.3 Hz, 3F), -112.10 (d, J = 2.1 Hz, 1F), -113.84–114.05 (m, 2F), -114.48(d, J = 2.8 Hz, 2F), -126.09 (dd, J = 16.0, 7.6 Hz, 2F).

HRMS (ESI): C₁₃H₇F₁₀N+Na⁺ Calcd: 390.0311, Found: 390.0322.

4,4,5,5,6,6,7,7,7-nonafluoro-2-(4-(trifluoromethyl)phenyl)heptanenitrile (**4f**), 145.1mg, yield: 87%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.72 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H), 4.28 (dd, J = 9.4, 4.8Hz, 1H), 2.78–2.98 (m, 1H), 2.47–2.67 (m, 1H).

¹³**C NMR** (75 MHz, CDCl₃) δ 137.61, 131.58 (d, *J* = 33 Hz), 127.85, 126.67 (t, *J* = 3.0 Hz), 123.52 (d, *J* = 270 Hz), 118.00, 36.69 (t, *J* = 21.8 Hz), 29.65.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -63.04 (s, 3F), -81.06– -81.14 (m, 3F), -111.58– -113.81 (m, 2F), -124.30– -124.43(m, 2F), -125.98 (dd, J = 11.7, 9.1 Hz, 2F).

HRMS (ESI): C₁₄H₇F₁₂N+Na⁺ Calcd: 440.0285, Found: 440.0292.

4g

4-(1-cyano-3,3,4,4,5,5,6,6,6-nonafluorohexyl)benzonitrile (4g), 113.7mg, yield: 76%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.77 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 4.29 (dd, J = 9.1, 5.0 Hz, 1H), 2.78–2.99 (m, 1H), 2.48–2.67 (m, 1H).

¹³**C NMR** (75 MHz, CDCl₃) δ 138.63, 133.40, 128.29, 117.68, 117.64, 113.48, 36.45 (t, *J* = 21.0 Hz), 29.87.

¹⁹**F** NMR (282 MHz, CDCl₃) δ -80.99– -81.07 (m, 3F), -112.86– -113.98 (m, 2F), -124.30 (t, J = 32.5 Hz, 2F), -125.88– -125.98 (m, 2F).

HRMS (ESI): C₁₄H₇F₉N₂+Na⁺ Calcd: 397.0363, Found: 397.0361.

4h

4-(1-cyano-3,3,4,4,5,5,6,6,6-nonafluorohexyl)phenyl acetate (4h), 127.0mg, yield:78%. White solid, mp 44-45 °C.

¹**H** NMR (300 MHz, CDCl₃) δ 7.42 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 8.8 Hz, 2H), 4.20 (dd, J = 9.9, 4.4 Hz, 1H), 2.68–2.94 (m, 1H), 2.45–2.63 (m, 1H), 2.32 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 169.21, 151.06, 131.20, 128.45, 122.97, 118.54, 37.03, 28.80, (t, *J* = 21.0 Hz), 21.11.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.92– -81.01 (m, 3F), -112.48– -113.89 (m, 1F), -113.97– -115.19 (m, 1F), -124.36(d, J = 8.5 Hz, 2F), -125.92 (dd, J = 12.8, 8.6 Hz, 2F).

HRMS (ESI): C₁₅H₁₀F₉NO₂+Na⁺Calcd: 430.0460, Found: 430.0462.

4i

4,4,5,5,6,6,7,7,7-nonafluoro-2-(3-methoxyphenyl)heptanenitrile (4i), 127.4mg, yield:84%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.35 (t, *J* = 11.5, 1H), 6.94 (dd, *J* = 10.8, 7.4 Hz,3H), 4.15 (dd, *J* = 9.9, 4.3 Hz, 1H), 3.84 (s, 3H), 2.74 - 2.94 (m, 1H), 2.44 - 2.64 (m,1H).

¹³**C NMR** (75 MHz, CDCl₃) δ 160.41, 135.19, 130.77, 119.29, 118.69, 114.28, 113.10, 55.40, 36.99 (t, *J* = 21.0 Hz), 29.68.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -79.72– -81.94 (m, 3F), -111.82– -113.88 (m, 1F), -113.79– -115.69 (m, 1F), -124.35(dd, J = 12.7, 5.7 Hz, 2F), -125.58– -126.61 (m, 2F).

HRMS (ESI): C₁₄H₁₀F₉NO+Na⁺ Calcd: 402.0511, Found: 402.0525.

4j

4,4,5,5,6,6,7,7,7-nonafluoro-2-(2-fluorophenyl)heptanenitrile (4j), 126.3mg, yield: 86%. Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.37–7.55 (m, 2H), 7.12–7.27 (m, 2H), 4.48 (dd, *J* = 9.4, 4.7 Hz, 1H), 2.67–2.94 (m, 1H), 2.51–2.66 (m, 1H).

¹³**C NMR** (75 MHz, CDCl₃) δ 159.63 (d, J = 246.8 Hz), 131.25 (d, J = 8.3 Hz), 129.03 (d, J = 2.6 Hz), 125.27 (d, J = 3.7 Hz), 120.94 (d, J = 13.6 Hz), 117.80, 116.35 (d, J = 21.0 Hz), 35.12 (t, J = 21.0 Hz), 24.23.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.00– -81.10 (m, 3F), -112.91– -115.53 (m, 2F), -117.57 (s, 1F), -124.35– -124.46 (m, 2F), -125.91– -126.02 (m, 2F).

HRMS (ESI): C₁₃H₇F₁₀N+Na⁺Calcd: 390.0311, Found: 390.0330.

2-(3,4-dimethoxyphenyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptanenitrile (4k), 142.4mg, yield:87%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 6.84–6.95 (m, 3H), 4.13 (dd, *J* = 9.8, 4.5 Hz, 1H), 3.92 (d, 3H), 3.90 (s, 3H), 2.73–2.94 (m, 1H), 2.43–2.63 (m, 1H).

¹³**C NMR** (75 MHz, CDCl₃) δ 149.77, 149.55, 126.00, 119.65, 118.99, 111.71, 109.95, 56.07, 56.00, 36.83 (t, *J* = 21.0 Hz), 29.38.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.96– -81.05 (m, 3F), -112.13– -113.99 (m, 1F), -113.99– -115.61 (m, 1F), -122.97– -125.25 (m, 2F), -124.83– -126.45 (m, 2F).

HRMS (ESI): C₁₅H₁₂F₉NO₂+Na⁺ Calcd: 432.0617, Found: 432.0638.

4,4,5,5,6,6,7,7,7-nonafluoro-2-(pyridin-2-yl)heptanenitrile (4l), 119.0mg, yield: 85%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 8.64 (d, J = 4.5 Hz, 1H), 7.79 (td, J = 7.7, 1.6 Hz, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.21-7.36 (m, 1H), 4.36 (dd, J = 9.2, 4.8 Hz, 1H), 2.7-83.16(m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 152.32, 150.27, 137.79, 123.80, 122.17, 118.16, 34.18 (t, J = 1.5

²³C NMR (75 MHz, CDCl₃) δ 152.32, 150.27, 137.79, 123.80, 122.17, 118.16, 34.18 (t, J = 21.0 Hz), 31.69

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.99 - -81.07 (m, 3F), -111.09 - -113.50 (m,1F), -113.64 - -116.35 (m,1F), -122.57 - -125.15 (m, 2F), -125.97 (td, *J* = 12.7, 4.2 Hz, 2F).

HRMS (ESI): C₁₂H₇F₉N₂+Na⁺ Calcd: 373.0363, Found: 373.0365.

4,4,5,5,6,6,7,7,7-nonafluoro-2-(2,4,6-trimethoxyphenyl)heptanenitrile (4m), 100.1mg, yield:57%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 6.14 (s, 2H), 4.81 (dd, J = 8.4, 5.4 Hz, 1H), 3.88 (s, 6H), 3.82 (s, 3H), 2.90–3.12 (m, 1H), 2.33–2.54 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 161.90, 158.33, 119.50, 102.70, 90.92, 55.95, 55.41, 33.02, 31.59, 18.02.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.00– -81.10 (m, 3F), -113.64– -114.74 (m, 1F), -115.27– -116.33 (m, 1F), -124.43– -124.52 (m, 2F), -125.95– -126.04 (m, 2F).

HRMS (ESI): C₁₆H₁₄F₉NO₃+Na⁺ Calcd: 462.0722, Found: 462.0746.

4,4,5,5,6,6,7,7,7-nonafluoro-2-(naphthalen-1-yl)heptanenitrile (4n), 118.1mg, yield: 74%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.77–7.97 (m, 4H), 7.51–7.68 (m, 3H), 4.96 (dd, J = 10.5, 2.5 Hz, 1H), 2.85–3.02 (m, 1H), 2.59–2.82 (m, 1H).

¹³**C NMR** (75 MHz, CDCl₃) δ 134.21, 130.10, 129.73, 129.18, 129.09, 127.78, 126.59, 126.08, 125.55, 121.03, 119.05, 36.03 (t, *J* = 21.8 Hz), 26.60.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.97 (dd, J = 9.5, 2.8 Hz, 3F), -111.28– -114.04 (m, 1F), -114.76 (dd, J = 147.9, 134.8 Hz, 1F), -124.30 (d, J = 8.8 Hz, 2F), -125.85 (t, J = 11.3 Hz, 2F).

HRMS (ESI): C₁₇H₁₀F₉N+Na⁺ Calcd: 422.0562, Found: 422.0583.

2-(anthracen-9-yl)-4,4,5,5,6,6,7,7,7-nonafluoroheptanenitrile (40), 120.4mg, yield: 67%. Light yellow liquid

¹**H** NMR (300 MHz, CDCl₃) δ 7.60 (d, J = 7.4 Hz, 1H), 7.54–7.29 (m, 7H), 6.08 (t, J = 7.8 Hz, 1H), 4.78 (t, J = 16.2 Hz, 1H), 3.68 (dd, J = 17.8, 7.8 Hz, 1H), 3.48 (dd, J = 17.9, 7.8 Hz, 1H).

¹³**C NMR** (75 MHz, CDCl₃) δ 140.35, 139.51, 135.25, 130.97, 130.73, 130.08, 128.92, 128.34, 128.03, 127.43, 127.37, 124.58, 117.91, 114.72, 48.94 (t, *J* = 22.5 Hz), 18.48.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -79.55– -82.64 (m, 3F), -111.62– -111.83 (m, 2F), -119.37– -119.45 (m, 2F), -125.74– -125.93 (m, 2F).

HRMS (ESI): C₂₁H₁₂F₉N+Na⁺ Calcd: 472.0718, Found: 472.0715.

4,4,5,5,6,6,7,7,7-nonafluoro-3-methyl-2-phenylheptanenitrile (4p), 69.7mg, yield: 48%. Colourless liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.37–7.48 (m, 5H), 4.48 (d, J = 2.1 Hz, 1H), 2.59–2.72 (m, 1H), 1.27 (d, J = 7.0 Hz, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 132.92, 129.41, 128.81, 127.60, 116.86, 41.99 (t, *J* = 20.3 Hz), 36.06, 8.49.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -79.74– -81.79 (m, 3F), -113.10– -115.01 (m, 1F), -117.23– -118.71 (m, 1F), -119.78– -121.26 (m, 1F), -121.26– -122.83 (m, 1F), -124.24– -125.88 (m, 1F), -125.96– -127.70 (m, 1F).

HRMS (ESI): C₁₄H₁₀F₉N+Na⁺ Calcd: 386.0562, Found: 386.0555.

6a

2-benzyl-4,4,5,5,6,6,7,7,7-nonafluoroheptanenitrile (6a), 114.7mg, yield: 79%. White solid, mp 43 $^{\circ}$ C

¹**H NMR** (300 MHz, CDCl₃) δ 7.27–7.41 (m, 5H), 3.17–3.27 (m, 1H), 3.28–3.10 (m, 2H), 2.23–2.60 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 134.97, 129.09, 127.99, 119.53, 38.38, 32.61, 25.94.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.96– -81.05 (m, 3F), -112.29– -114.63 (m, 2F), -124.30– -126.02 (m, 4F).

HRMS (ESI): C₁₄H₁₀F₉N+Na⁺ Calcd: 386.0567, Found: 386.0565.

4,4,5,5,6,6,7,7,7-nonafluoro-2-phenethylheptanenitrile (6b), 125.2mg, yield: 83%. Yellow liquid

¹**H NMR** (300 MHz, CDCl₃) δ 7.19–7.36 (m, 5H), 2.88–3.01 (m, 2H), 2.71–2.89 (m, 1H), 2.41–2.67(m, 1H), 2.28–2.39 (m, 1H), 1.96–2.19 (m, 2H).

¹³**C** NMR (75 MHz, CDCl₃) δ 139.04, 128.85, 128.37, 126.80, 119.65, 34.27, 33.39 (t, *J* = 21.0 Hz), 32.82, 23.52.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.01– -81.10 (m, 3F), -113.58– -113.82 (m, 2F), -124.41– -124.53 (m, 2F), -125.93– -126.04 (m, 2F).

HRMS (ESI): C₁₅H₁₂F₉N+Na⁺ Calcd: 400.0718, Found: 400.0717.

 $4,4,5,5,6,6,7,7,7-nonafluoro-2-(2-(4-methoxyphenyl)-2-oxoethyl) heptanenitrile.\ (6c),$

116.2mg, yield: 69%. White solid, mp 125-126℃.

¹**H NMR** (300 MHz, CDCl₃) δ 7.93 (d, *J* = 8.2 Hz, 2H), 6.97 (d, *J* = 8.4 Hz, 2H), 3.90 (s, 3H), 3.67 (s, 1H), 3.35 – 3.55 (m, 2H), 2.49–2.68 (m, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 192.39, 164.38, 130.44, 128.39, 119.83, 114.13, 55.60, 39.86, 32.56, 19.43.

¹⁹**F** NMR (282 MHz, CDCl₃) δ -80.98 (t, J = 9.0 Hz, 2F), -112.41– -114.81 (m, 2F), -124.34(d, J = 7.8 Hz, 2F), -125.90 (t, J = 10.4 Hz, 3F).

HRMS (ESI): C₁₆H₁₂F₉NO₂+Na⁺ Calcd: 4444.0622, Found: 444.0616.

2-cyclohexyl-4,4,5,5,6,6,7,7,7-nonafluoroheptanenitrile (6d), 130.7mg, yield: 92%. White solid, mp 43-44 $^{\circ}$ C

¹**H NMR** (300 MHz, CDCl₃) δ 2. 72–2.98 (m, 1H), 2.40–2.70. (m, 1H), 2.12–2.40 (m, 1H), 1.68–2.00(m, 5H), 1.59 (s, 1H), 1.27–1.36 (m, 5H).

¹³**C** NMR (75 MHz, CDCl₃) δ 119.13, 39.96, 31.42 (t, J = 21.8 Hz), 30.01, 28.47, 25.78, 25.58.

¹⁹**F** NMR (282 MHz, CDCl₃) δ -81.12 (dd, J = 8.0, 4.8 Hz, 3F), -112.14– -116.35 (m, 2F), -123.04– -125.49 (m, 2F), -125.16– -126.96 (m, 2F).

HRMS (ESI): C₁₃H₁₄F₉N+Na⁺ Calcd: 378.0875, Found: 378.0883.

2-((1,3-dioxoisoindolin-2-yl)methyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptanenitrile (6e),

146.9mg, yield:85%. White solid, mp 111-112 $^{\circ}$ C.

¹**H** NMR (300 MHz, CDCl₃) δ 7.92 (dd, J = 5.5, 3.0 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 4.14 (dd, J = 13.8, 7.9 Hz, 1H), 3.95 (dd, J = 13.8, 6.8 Hz, 1H), 3.53–3.63 (m, 1H), 2.38–2.77 (m, 2H).

¹³**C** NMR (75 MHz, CDCl₃) δ 167.58, 134.71, 131.42, 123.94, 117.56, 38.81, 31.55 (t, *J* = 22.5 Hz), 24.15.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.98– -81.07 (m, 3F), -111.21– -114.98 (m, 2F), -122.97– -125.21 (m, 2F), -124.92– -126.50 (m, 2F).

HRMS (ESI): C₁₆H₉F₉N₂O₂+Na⁺ Calcd: 455.0413, Found: 455.0401.

10-cyano-12,12,13,13,14,14,15,15,15-nonafluoropentadecyl benzoate (6f), 149.5mg, yield:72%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 8.04 (t, J = 2.1 Hz, 2H), 7.53–7.59 (m, 1H), 7. 34–7.50 (m, 2H), 4.31 (t, J = 6.6 Hz, 2H), 2.87–3.08 (m, 1H), 2. 40–2.66 (m, 1H), 2.11–2.38 (m, 1H), 1.86–1.67 (m, 4H), 1.33–1.85(s, 12H).

¹³**C NMR** (75 MHz, CDCl₃) δ 166.68, 132.83, 130.47, 129.51, 128.32, 119.97, 65.04, 33.42 (t, *J* = 21.0 Hz), 32.65, 29.30, 29.15, 28.81, 28.67, 26.71, 25.97, 24.06.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.03– -81.11 (m, 3F), -113.71– -114.00 (m, 2F), -124.42– -124.53 (m, 2F), -125.96– -126.07 (m, 2F).

HRMS (ESI): C₂₃H₂₆F₉NO₂+Na⁺ Calcd: 542.1712, Found: 542.1704.

6g

11-((tert-butyldiphenylsilyl)oxy)-2-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)undecanenitrile (6g), 193.4mg, yield: 74%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.65–7.69 (m, 4H), 7.35–7.43 (m, 6H), 3.65 (t, *J* = 6.5 Hz, 2H), 2.91–3.01 (m, 1H), 2.17–2.64 (m, 2H), 1.67–1.75 (m, 2H), 1.1.27–1.61 (m, 14H), 1.05 (s, 9H).

¹³**C** NMR (75 MHz, CDCl₃) δ 135.58, 134.15, 129.50, 127.58, 120.00, 63.96, 33.47 (t, J = 21.0 Hz), 32.70, 32.55, 29.42, 29.28, 29.21, 28.86, 26.86, 26.76, 25.73, 24.09, 19.23.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.94– -81.04 (m, 3F), -113.70– -113.94 (m, 2F), -124.37– -124.48 (m, 2F), -125.90– -126.01 (m, 2F).

HRMS (ESI): C₃₂H₄₀F₉NOSi+Na⁺ Calcd: 676.2628, Found: 676.2519.

10-cyano-12, 12, 13, 13, 14, 14, 15, 15, 15-nonafluoropentadecyl diphenylphosphinate (6h), 210.52, yield: 85%. Colourless liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.78–7.83 (m, 4H), 7.42–7.53 (m, 6H), 4.01 (q, *J* = 6.7 Hz, 2H), 2.91–3.01 (m, 1H), 2.43–2.64 (m, 1H), 2.18–2.38 (m, 1H), 1.62–1.78 (m, 4H), 1.35–1.61 (m, 4H), 1.29–1.60 (m, 12H).

¹³**C** NMR (75 MHz, CDCl₃) δ 132.52, 132.11, 132.08, 131.68, 131.55, 130.70, 128.60, 128.42, 119.97, 64.95 (d, J = 6.1 Hz), 33.43 (t, J = 21.0 Hz), 32.65, 30.50 (d, J = 6.6 Hz), 29.25, 29.13, 29.02, 28.78, 26.71, 25.54, 24.07.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.98– -81.06 (m, 3F), -113.70– -113.96 (m, 2F), -124.39– -124.49 (m, 2F), -125.93– 126.03 (m, 2F).

³¹**P NMR** (121 MHz, CDCl₃) δ 31.21.

HRMS (**ESI**): C₂₈H₃₁F₉NO₂P+Na⁺ Calcd: 638.1841, Found: 638.1912.

(1S)-((2R,4S,5S)-5-((S)-1-cyano-3,3,4,4,5,5,6,6,6-nonafluorohexyl)quinuclidin-2-yl)(quino lin-4-yl)methyl acetate (6i), 176.8mg, yield:76%, d.r. = 2:1. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 8.89 (d, J = 4.3 Hz, 1H), 8.11 (dd, J = 17.0, 8.6 Hz, 2H), 7.44–7.87 (m, 2H), 7.34 (d, J = 4.4 Hz, 1H), 6.58 (t, J = 8.4 Hz, 1H), 2.30–3.27 (m, 8H), 2.15 (s, 3H), 1.53–1.86 (m, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 169.67, 149.97, 148.52, 144.37, 130.59, 129.45, 127.20, 125.39, 122.98, 118.96, 117.83, 73.71, 58.57, 49.70, 48.99, 48.96, 37.45, 31.88, 26.11, 26.42, 25.43, 24.42, 21.71, 21.02.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.89– -80.98 (m, 3F), -111.49– -114.97 (m, 2F), -124.11– -124.18 (m, 2F), -125.80– -125.88 (m, 2F).

HRMS (ESI): C₂₆H₂₄F₉N₃O₂+H⁺ Calcd: 582.1725, Found: 582.1816.

4,4,5,5,6,6,7,7,7-nonafluoro-2-((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16, 17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)heptanenitrile (**6j**), 187.0mg, yield: 89%, d.r. > 20:1. Colourless liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.35 (d, J = 7.9 Hz, 1H), 7.15 (d, J = 8.1 Hz, 2H), 4.13 (dd, J = 10.1, 4.2 Hz, 1H), 2.94 (dd, J = 8.7, 3.9 Hz, 2H), 2.67–2.88 (m, 1H), 2.37–2.67 (m, 3H), 2.30 (t, J = 8.4 Hz, 1H), 1.90–2.23 (m, 4H), 1.35–1.78 (m, 6H), 0.91 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 140.87, 138.17, 131.23, 127.67, 126.69, 124.46, 118.93, 50.41, 47.89, 44.24, 37.91, 37.30 (t, *J* = 21.0 Hz), 37.02, 31.50, 29.29, 26.23, 25.64, 21.55, 13.78.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.98– -81.07 (m, 3F), -112.72– -115.14 (m, 2F), -124.37 (t, J = 7.6 Hz, 2F), -125.80– -125.98 (m, 2F).

HRMS (ESI): C₂₅H₂₄F₉NO+Na⁺ Calcd: 548.1612, Found: 548.1615.

8a

4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-2-*(p***-tolyl)nonanenitrile (8a)**, 163.0mg, yield: 88%. Colourless liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.21–7.29 (m, 4H), 4.15 (dd, J = 9.8, 4.5 Hz, 1H), 2.72–2.93 (m, 1H), 2.46–2.61 (m, 1H), 2.37 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 139.08, 130.83, 130.26, 127.05, 118.93, 37.15 (t, *J* = 20.3 Hz), 29.38, 21.03.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.83– -80.91 (m, 3F), -113.47– -113.87 (m, 2F), -121.77– -121.86 (m, 2F), -122.84– -122.93 (m, 2F), -123.42– -123.55 (m, 2F), -126.14– -126.27 (m, 2F).

HRMS (ESI): C₁₆H₁₀F₁₃N+Na⁺ Calcd: 486.0498, Found: 486.0512.

4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-2-(*p*-tolyl)undecanenitrile (8b), 193.7mg, yield: 86%. White solid, mp $65-66^{\circ}$ C.

¹**H** NMR (300 MHz, CDCl₃) δ 7.21–7.29 (m, 4H), 4.16 (dd, J = 9.8, 4.5 Hz, 1H), 2.72–2.93 (m, 1H), 2.42–2.61 (m, 1H), 2.37 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 139.08, 130.82, 130.26, 127.06, 118.95, 37.16, 29.38, 21.06.

¹⁹**F** NMR (282 MHz, CDCl₃) δ -80.82 (dd, J = 9.9 Hz, 3F), -113.48– -113.87 (m, 2F), -121.58– -123.48 (m, 10F), -126.12– -126.27 (m, 2F).

HRMS (ESI): C₁₈H₁₀F₁₇N+Na⁺ Calcd: 586.0439, Found: 586.0433.

4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-2-phenethylnonanenitrile (8c), 158.4mg, yield: 83%. White solid, mp 47-48°C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.30–7.35 (m, 5H), 2.85–3.01 (m, 2H), 2.76–2.84 (m, 1H), 2.44–2.65 (m, 1H), 2.18–2.38 (m, 1H), 1.94–2.15 (m, 2H).

¹³**C** NMR (75 MHz, CDCl₃) δ 139.04, 128.83, 128.36, 126.78, 119.63, 34.27, 33.49 (t, *J* = 22.5 Hz), 32.82, 23.55.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.85– -80.94 (m, 3F), -113.34– -113.58 (m, 2F), -121.81– -121.89 (m, 2F), -122.81– -122.94 (m, 2F), -123.47– -123.63 (m, 2F), -126.15– -126.29 (m, 2F).

HRMS (ESI): C₁₈H₁₄F₁₃N+Na⁺ Calcd: 500.0654, Found: 500.0667.

4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-2-phenethylundecanenitrile (8d), 196.2mg, yield: 85%. White solid, mp 75-76°C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.20–7.36 (m, 5H), 2.87–3.13 (m, 2H), 2.71–2.89 (m, 1H), 2.44–2.69(m, 1H), 2.19–2.33 (m, 1H), 1.94–2.14 (m, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 139.02, 128.84, 128.36, 126.79, 119.64, 34.28, 33.50, 32.82, 23.55

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.82 (t, J = 9.9 Hz, 3F), -113.34– -113.56 (m, 2F), -121.61– -123.48 (m, 10F), -126.12– -126.24 (m, 2F).

HRMS (ESI): C₂₀H₁₄F₁₇N+Na⁺ Calcd: 600.0590, Found: 600.0627.

8e

2-((1,3-dioxoisoindolin-2-yl)methyl)-4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononanenitrile (8e), 168.1mg, yield:79%. White solid, mp 127-128℃.

¹**H** NMR (300 MHz, CDCl₃) δ 7.91 (dd, J = 5.2, 3.1 Hz, 2H), 7.79 (dd, J = 5.3, 3.0 Hz, 2H), 4.13 (dd, J = 13.8, 7.9 Hz, 1H), 3.95 (dd, J = 13.8, 6.8 Hz, 1H), 3.49–3.65 (m, 1H), 2.38–2.77 (m, 2H).

¹³**C** NMR (75 MHz, CDCl₃) δ 167.57, 134.71, 131.42, 123.95, 117.53, 38.82, 31.82(t, J = 20.6 Hz), 24.17.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.81 (t, J = 9.8 Hz, 3F), -112.00– -114.30 (m, 2F), -121.81 (s, 2F), -122.88 (s, 2F), -123.26 (t, J = 12.9 Hz, 2F), -126.17 (td, J = 15.1, 6.8 Hz, 2F). **HRMS (ESI):** C₁₈H₉F₁₃N₂O₂+Na⁺ Calcd: 555.0354, Found: 555.0360.

8f

2-((1,3-dioxoisoindolin-2-yl)methyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro undecanenitrile (8f), 207.3mg, yield: 82%. White solid, mp 150-151℃.

¹**H** NMR (300 MHz, CDCl₃) δ 7.90–7.94 (m, 2H), 7.78–7.81 (m, 2H), 4.13 (dd, J = 13.8, 7.8Hz, 1H), 3.95 (dd, J = 13.8, 6.9 Hz, 1H), 3.68–3.47 (m, 1H), 2.81–2.30 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 167.56, 134.71, 131.42, 123.97, 117.51, 38.82, 31.70, 24.16 ¹⁹F NMR (282 MHz, CDCl₃) δ -80.78 (t, *J* = 9.9 Hz, 3F), -112.94– -113.31 (m, 2F), -121.56–

-123.23 (m, 10F), -126.08– -126.20 (m, 2F).

HRMS (ESI): C₂₀H₉F₁₇N₂O₂+Na⁺ Calcd: 655.0285, Found: 655.0325.

8g

11-((tert-butyldiphenylsilyl)oxy)-2-(2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptyl)undecane nitrile (8g), 253.1mg, yield: 84%. Colourless liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.66–7.68 (m, 4H), 7.34–7.44 (m, 6H), 3.66 (t, *J* = 6.5 Hz, 2H), 2.90–3.00 (m, 1H), 2.43–2.64 (m, 1H), 2.17–2.37 (m, 1H), 1.73 (ddd, *J* = 11.7, 8.9, 5.8 Hz, 2H), 1.67–1.49 (m, 3H), 1.50–1.17 (m, 11H), 1.07 (s, 9H).

¹³**C** NMR (75 MHz, CDCl₃) δ 135.58, 134.17, 129.49, 127.57, 119.97, 63.96, 33.58 (t, *J* = 21.8 Hz), 32.71, 32.55, 29.41, 29.27, 29.20, 28.85, 26.85, 26.75, 25.73, 24.12, 19.22.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.79– -80.88 (m, 3F), -113.44– -113.70 (m, 2F), -121.78– -121.87 (m, 2F), -122.81– 122.90 (m, 2F), -123.42– 123.55 (m, 2F), -125.18– -127.41 (m, 2F).

HRMS (ESI): C₃₄H₄₀F₁₃NOSi+Na⁺ Calcd: 776.2569, Found: 776.2560.

8h

2-(9-((tert-butyldiphenylsilyl)oxy)nonyl)-4,4,5,5,6,6,7,7,8,8,9,10,10,11,11,11-hexadecafluo ro-9-methylundecanenitrile (8h), 293.5mg, yield: 86%. Colourless liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.65–7.68 (m, 4H), 7.34–7.45 (m, 6H), 3.67 (t, *J* = 6.5 Hz, 2H), 2.90–3.00 (m, 1H), 2.43–2.64 (m, 1H), 2.17–2.37 (m, 1H), 1.62–1.75 (m, 2H), 1.54–1.61 (m, 4H), 1.33 (br, 11H), 1.05 (s, 9H).

¹³**C** NMR (75 MHz, CDCl₃) δ 135.57, 134.18, 129.48, 127.56, 119.95, 63.96, 33.60 (t, J = 21.8 Hz), 32.72, 32.54, 29.40, 29.26, 29.19, 28.85, 26.85, 26.75, 25.72, 24.12, 19.22.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.82 (t, J = 9.9 Hz, 3F), -113.42– -113.65 (m, 2F), -121.59– -122.75(m, 10F), -123.43 (s, 2F), -126.09– -126.21 (m, 2F).

HRMS (ESI): C₃₆H₄₀F₁₇NOSi+Na⁺ Calcd: 876.2520, Found: 876.2526.

4,4,4-trifluoro-2-(*p*-tolyl)butanenitrile (8i), 64.7mg, yield: 76%, Colourless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.23 (q, J = 8.4 Hz, 4H), 4.05 (dd, J = 4.5, 9.8 Hz, 1H), 2.69-2.88 (m, 1H), 2.34-2.64 (m, 1H), 2.35 (s, 3H).

¹³**C** NMR (75 MHz, CDCl₃) δ 139.01, 130.50, 130.19, 127.06, 124.74 (q, J = 276.0 Hz), 118.82, 39.66 (q, J = 27.0 Hz), 30.85 (q, J = 3.75 Hz), 21.02.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -60.08.

HRMS (ESI): C₁₁H₁₀F₃N+Na⁺ Calcd: 236.0658, Found: 236.0660.

4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-2-phenethylnonanenitrile (**8j**), 158.4mg, yield: 83%. White solid, mp 47-48°C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.18–7.35 (m, 5H), 2.73–2.99 (m, 3H), 2.24–2.63 (m, 2H), 1.93–2.11(m, 2H).

¹³**C** NMR (75 MHz, CDCl₃) δ 139.10, 130.56, 128.84, 126.88, 124.99 (q, *J* = 276.8 Hz), 119.45, 36.38 (q, *J* = 29.3 Hz), 33.68, 32.79, 24.94 (d, *J* = 3.0 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -64.75.

HRMS (ESI): C₁₂H₁₂F₃N+Na⁺ Calcd: 250.0820, Found: 250.0823.

8k

2-((1,3-dioxoisoindolin-2-yl)methyl)-4,4,4-trifluorobutanenitrile (8k), 78.3mg, yield: 73%. Colourless liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.89–7.93 (m, 2H), 7.77–7.81 (m, 2H), 4.11 (dd, J = 13.8, 6.0Hz, 1H), 3.93 (dd, J = 13.8, 6.9 Hz, 1H), 3.43–3.53 (m, 1H), 2.40–2.74 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 167.57, 134.71, 131.42, 124.78 (q, J = 274.5 Hz), 123.92, 117.33, 38.45, 34.47 (q, J = 30.0 Hz), 25.46 (d, J = 2.3 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -64.80.

HRMS (ESI): C₁₃H₉F₃N₂O₂+Na⁺ Calcd: 305.0514, Found: 305.0511.

ethyl 4-cyano-2,2-difluoro-4-(*p*-tolyl)butanoate (81), 61.0mg, yield: 57%. Colourless liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.19–7.26 (m, 4H), 4.27 (qd, J = 7.1, 1.3 Hz, 2H), 4.08 (dd, J = 9.4, 5.1 Hz, 1H), 2.75–2.92 (m, 1H), 2.48–2.66 (m, 1H), 2.36 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 162.89 (t, J = 31.5 Hz), 138.78, 131.08, 130.06, 127.22, 119.34, 113.86 (t, J = 251.3 Hz), 63.50, 40.22 (t, J = 23.3 Hz), 30.33 (t, J = 4.5 Hz), 21.09, 13.82. ¹⁹F NMR (282 MHz, CDCl₃) δ -105.28 (d, J = 2.3 Hz).

HRMS (ESI): C₁₄H₁₅F₂NO₂+Na⁺ Calcd: 290.0963, Found: 290.0970.

4,4,5,5,6,6,7,7,7-nonafluoro-2-*(p***-tolyl)heptan-1-amine (9)**, 116.0mg, yield: 79% Colourless liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.16 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 2.88–3.10 (m, 3H), 2.38–2.53 (m, 2H), 2.34 (s, 3H), 1.64 (s, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 138.45, 136.83, 129.57, 127.45, 47.72, 41.24, 34.24 (t, *J* = 21.8 Hz), 21.00.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.06– -81.15 (m, 3F), -112.81– -112.92 (m, 2F), -124.41– -124.52(m, 2F), -125.91– -126.03 (m, 2F).

HRMS (ESI): C₁₄H₁₄F₉N+H⁺ Calcd: 368.1055, Found: 368.1061.

5,5,6,6,7,7,8,8,8-nonafluoro-3-*(p-tolyl)***octanoic acid (10)**, 129.9mg, yield: 85%. White solid, mp 77-78°C.

¹**H** NMR (300 MHz, CDCl₃) δ 11.08 (br, 1H), 7.14–7.25 (m, 4H), 3.98 (dd, *J* = 9.7, 4.6 Hz, 1H), 3.02–3.23 (m, 1H), 2.35–2.50 (m, 1H), 2.33 (s, 3H).

¹³**C** NMR (75 MHz, CDCl₃) δ 178.36, 138.29, 133.54, 129.87, 127.52, 43.26, 33.84 (t, *J* = 21.8 Hz), 21.05.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.07– -81.15 (m, 3F), -112.62– -115.35 (m, 2F), -124.56– -124.61(m, 2F), -125.91– -126.08 (m, 2F).

HRMS (ESI): C₁₅H₁₃F₉O₂+Na⁺ Calcd: 405.0508, Found: 405.0484.

8. X-ray structure of 6e

$O_{NC} C_{4}F_{9} \equiv O_{0}$	
Identification code	guoqp_0508
Empirical formula	$C_{16}H_9F_9N_2O_2$
Formula weight	432.25
Temperature/K	291.08(10)
Crystal system	triclinic
Space group	P-1
a/Å	5.7476(7)
b/Å	11. 2870 (13)
c/Å	14. 0380 (17)
α / °	76. 581 (10)
β/°	85. 498 (10)
γ / °	83. 205 (10)
Volume/Å ³	878. 38 (18)
Ζ	2
$\rho_{calc}g/cm^3$	1.634
μ / mm^{-1}	0. 172
F (000)	432.0
Crystal size/mm ³	$0.21 \times 0.15 \times 0.14$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	7.14 to 52.04
Index ranges	$-7 \le h \le 7, -13 \le k \le 12, -17 \le 1$
	≤ 17
Reflections collected	5554
Independent reflections	$3444 [R_{int} = 0.0292, R_{sigma} = 0.0636]$
Data/restraints/parameters	3444/42/280
Goodness-of-fit on F^2	1.029
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0905, wR_2 = 0.2296$
Final R indexes [all data]	$R_1 = 0.1501, wR_2 = 0.2871$
Largest diff. peak/hole / e Å $^{-3}$	0.53/-0.37

9. NMR spectra of new compounds

`CF₃

4a ¹³C NMR (75 MHz, CDCl₃)

CN F

4a ¹⁹F NMR (282 MHz, CDCl₃)

CN FF FF FF

4c ¹⁹**F NMR** (282 MHz, CDCl₃)

S32

4e ¹⁹F NMR (282 MHz, CDCl₃)

															
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	ppm
								300			0.58	1	228		
	7.734	7.263					4.292	-4.261 	2.927 2.894 2.857 2.832 2.832	2.813	2.592	2.545 2.541 2.530 2.494			-0,000

CN F CF3 F₃C

4f ¹H NMR (300 MHz, CDCl₃)

∠F `CF₃ F₃C²

4f ¹³C NMR (75 MHz, CDCl₃)

4g ¹H NMR (300 MHz, CDCl₃)

7.752

-0.000

4j ¹⁹**F NMR** (282 MHz, CDCl₃)

4m ¹⁹F NMR (282 MHz, CDCl₃)

-0.000

_CF₃ ĆN F

6a ¹H NMR (300 MHz, CDCl₃)

CN F CF3

6C ¹H NMR (300 MHz, CDCl₃)

CF3

6c ¹⁹F NMR (282 MHz, CDCl₃)

7.930 7.920 7.912 7.798 7.798 7.798 7.7780 7.7780

6e ¹**H NMR** (300 MHz, CDCl₃)

6e ¹⁹**F** NMR (282 MHz, CDCl₃)

6h ³¹P NMR (121 MHz, CDCl3)

6j ¹⁹F NMR (282 MHz, CDCl₃)

140	130	120	110	100	90	00	10	00	30 40	30	20	10	U	PF
							-113.84	-121.81 -121.81 -121.85 -121.85 -121.85 -122.84		123.48 123.49 123.50 123.55	-126.14 -126.15 -126.16	-126.23 -126.25 -126.25 -126.27		
								. 10						

CF3

8a ¹⁹F NMR (282 MHz, CDCl₃)

-0.000

8b ¹H NMR (300 MHz, CDCl₃)

8b ¹⁹F NMR (282 MHz, CDCl₃)

8c ¹H NMR (300 MHz, CDCl₃)

ÇN F CF3

8c ¹³C NMR (75 MHz, CDCl₃)

CN E °CF₃

8d ¹H NMR (300 MHz, CDCl₃)

8d ¹⁹F NMR (282 MHz, CDCl₃)

8e ¹H NMR (300 MHz, CDCl₃)

7.935

41.173 41.173 41.173 41.173 41.173 41.173 41.173 41.173 41.173 41.172 41

-0.000

CF₃

8f ¹H NMR (300 MHz, CDCl₃)

8f 19F NMR (282 MHz, CDCl3)

8g ¹³C NMR (75 MHz, CDCl₃)

CF3

8j ¹H NMR (300 MHz, CDCl₃)

81 ¹⁹F NMR (282 MHz, CDCl₃)

