Electronic Supplementary Information

Selectivity-switchable construction of benzo-fused polycyclic compounds through a gold-catalyzed reaction of enyne-lactone

Kui Luo,^a Ling Zhang,^a Huanfeng Jiang,^a Lianfen Chen*^a and Shifa Zhu*^{ab}

^a Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
^b State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China Corresponding author: <u>zhusf@scut.edu.cn</u>; <u>chenlf@scut.edu.cn</u>

Table of contents

1.Experimental procedures and spectroscopic data	2
1.1 Optimization of Reaction Conditions ^{<i>a</i>}	2
1.2 General information	
1.3 Preparation of substrates 1	
1.4 General procedure for the synthesis of 3	9
1.5 Gram-scale reaction	
1.6 General procedure for derivatization reaction of 3a	
2. References:	
3. X-ray diffraction analysis	
3.1 Crystal data and structure refinement for 3a	
3.2 Crystal data and structure refinement for 31	
3.3 Crystal data and structure refinement for 3aa	
4. Copies of NMR spectra	

1.Experimental procedures and spectroscopic data

1.1 Optimization of Reaction Conditions^{*a*}

				Yield ^{<i>b</i>} (%)	
Entry	Cat.	Add.	$T(^{\mathrm{o}}\mathrm{C})$	2a	3 a
1	Ph ₃ PAuCl	AgSbF ₆	80	74	trace
2	Ph ₃ PAuCl	$AgBF_4$	80	40	6
3	Ph ₃ PAuCl	AgBF ₄	100	11	trace
4	(p-F-Ph) ₃ PAuCl	$AgBF_4$	80	23	trace
5	(p-OMe-Ph) ₃ PAuCl	$AgBF_4$	80	13	trace
6	JohnPhosAuCl	$AgBF_4$	80	23	trace
7	IMesAuCl	$AgBF_4$	80	trace	trace
8	SIMesAuCl	$AgBF_4$	80	trace	trace
9	IPrAuCl	$AgBF_4$	80	58	42
10	SIPrAuCl	$AgBF_4$	80	22	50
11	SIPrAuCl	AgSbF ₆	80	26	39
12	SIPrAuCl	AgNTf ₂	80	trace	trace
13	SIPrAuCl	AgOTf	80	41	31
14^d	SIPrAuCl	$AgBF_4$	80	33	44
15^e	SIPrAuCl	$AgBF_4$	80	11	trace
16 ^f	SIPrAuCl	$AgBF_4$	80	18	trace
17^{g}	SIPrAuCl	$AgBF_4$	80	nr	nr
18	SIPrAuCl	$AgBF_4$	60	41	18
19	SIPrAuCl	AgBF ₄	100	13	70 ^c
20^{h}	SIPrAuCl	$AgBF_4$	100	14	69
21^i	SIPrAuCl	$AgBF_4$	100	12	68
22^{j}	SIPrAuCl	$AgBF_4$	100	8	42
23^k	SIPrAuCl	$AgBF_4$	100	7	60
24	-	$AgBF_4$	100	7	12
25^l	-	$AgBF_4$	100	nr	nr
26	-	-	100	nr	nr
27	Sc(OTf) ₃	-	100	15	nd
28	Bi(OTf) ₃	-	100	20	nd
29	$Cu(OTf)_2$	-	100	trace	nd
30	$Yb(OTf)_3$	-	100	nr	nr
31	$Zn(OTf)_2$	-	100	nr	nr
32	ZnI_2	-	100	nr	nr
33	CuCl	-	100	nr	nr
34	TfOH	-	100	complex	complex
35	Tf ₂ NH	-	100	trace	nd

^{*a*} Unless otherwise noted, the reaction was performed with **1** (0.2 mmol), SIPrAuCl (5 mol%) and AgBF₄ (5 mol%) in DCE (2 mL) at 100 °C under N₂ for 12 h, $E = CO_2Me$. ^{*b*} The yield was determined by ¹H NMR using 1-methyl-4-nitrobenzene as an internal standard. ^{*c*} Isolated yield. ^{*d*} CH₂Cl₂ as solvent. ^{*e*} THF as solvent. ^{*f*} Toluene as solvent. ^{*g*} CH₃CN as solvent. ^{*h*} The AgCl precipitates was filtered off by a short flash column chromatography. ^{*i*} The reaction was performed in the dark condition. ^{*j*} SIPrAuCl (1 mol%) and AgBF₄ (1 mol%). ^{*k*} SIPrAuCl (2 mol%) and AgBF₄ (2 mol%). ^{*l*} PTSA (20 mol%) and AgBF₄ (5 mol%).

1.2 General information

All reactions were carried out under an inert atmosphere of dry N₂ in Schlenk tube. ¹H, ¹³C, ¹⁹F NMR spectra were recorded on a Bruker AVANCE 400 (400 MHz for ¹H; 100 MHz for ¹³C; 376 MHz for ¹⁹F), ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as external standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Infrared (IR) spectra are recorded on a Nicolet 210 spectrophotometer and were recorded in potassium bromide (KBr) pellet. Mass spectra (MS) were obtained using ESI mass spectrometer. Melting points were determined using a hot stage apparatus. All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature.

1.3 Preparation of substrates 1

1.3.1 General procedure for 1a – 1y

The substrates 1a - 1y were synthesized according to our reported procedures and the data of the following enyne-lactone 1 were reported in our previous work.¹

Methyl 4-methoxy-5-oxo-2-(2-(o-tolylethynyl)phenyl)-2,5-dihydrofuran-3-carboxylate (1e)

Yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.3$, 210 mg, yield = 43% (2 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.5 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.26 – 7.22 (m, 2H), 7.19 (d, J = 7.3 Hz, 2H), 6.61 (s, 1H), 4.25 (s, 3H), 3.66 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 161.4, 148.8, 140.3, 135.5, 133.2, 132.1, 129.6, 129.4,

128.8, 128.7, 127.1, 125.8, 124.1, 122.6, 121.8, 94.2, 90.2, 78.1, 60.2, 52.1, 20.9; **IR** (KBr, cm⁻¹) 3667, 3544, 3061, 3022, 2954, 2864, 2213, 1935, 1773, 1720, 1657, 1600, 1571, 1493, 1451, 1436, 1390,

1334, 1304, 1229, 1174, 1114, 1025, 994, 910, 882, 836, 759, 737, 716, 639, 624, 586, 562, 534, 500, 451; **HRMS** (ESI) Calcd for C₂₂H₁₉O₅ (M+H)⁺ 363.1227, found 363.1230.

Methyl 4-methoxy-2-(2-((2-methoxyphenyl)ethynyl)phenyl)-5-oxo-2,5-dihydrofuran-3-carboxylate (1f)

Yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 4/1), $R_f = 0.3$, 250 mg, yield = 40% (2 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 1H), 7.50 (dd, J = 7.6, 1.6 Hz, 1H), 7.37 – 7.28 (m, 3H), 7.18 – 7.14 (m, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 6.72 (s, 1H), 4.26 (s, 3H), 3.88 (s, 3H), 3.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 161.5, 160.3, 148.7, 135.7,

133.3, 132.9, 130.3, 129.3, 128.6, 126.8, 124.3, 122.1, 120.6, 112.2, 110.8, 91.7, 90.5, 78.0, 60.3, 55.9, 52.1; **IR** (KBr, cm⁻¹) 3861, 3850, 3742, 3732, 3708, 3687, 3674, 3647, 3011, 2954, 2839, 2351, 2215, 1770, 1722, 1658, 1594, 1573, 1556, 1497, 1483, 1455, 1435, 1390, 1277, 1230, 1208, 1160, 1113, 1045, 1022, 994, 882, 835, 755, 663, 609, 524, 441; **HRMS** (ESI) Calcd for $C_{22}H_{19}O_6$ (M+H)⁺ 379.1176, found 379.1178.

Methyl 2-(2-((3,5-dimethylphenyl)ethynyl)phenyl)-4-methoxy-5-oxo-2,5-dihydrofuran-3-carboxylate (1g)

Yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4, 270 \text{ mg}$, yield = 38% (2 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.2 Hz, 1H), 7.38 – 7.29 (m, 2H), 7.19 (d, J = 4.8 Hz, 3H), 6.99 (s, 1H), 6.56 (s, 1H), 4.26 (s, 3H), 3.66 (s, 3H), 2.32 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 161.5, 148.8, 138.1, 135.5, 133.3, 130.7, 129.4, 128.6, 127.3, 123.9, 122.4, 121.9, 95.6, 85.7, 78.3, 60.3, 52.1, 21.2; **IR** (KBr, cm⁻¹) 3749, 3675, 3544, 3004,

2954, 2920, 2863, 2353, 2208, 1939, 1774, 1721, 1657, 1598, 1490, 1450, 1389, 1227, 1173, 1115, 1025, 995, 908, 851, 760, 689, 639, 624, 577, 560, 528, 473, 440; **HRMS** (ESI) Calcd for $C_{23}H_{21}O_5$ (M+H)⁺ 377.1384, found 377.1385.

Methyl 4-methoxy-2-(2-((4-nitrophenyl)ethynyl)phenyl)-5-oxo-2,5-dihydrofuran-3-carboxylate (1n)

Yellow solid, m.p. = 167-168°C, purified by chromatography (petroleum/ethyl acetate = 4/1), $R_f = 0.2$, 380 mg, yield = 48% (2 steps); ¹H NMR (400 MHz, CDCl₃) δ 8.25 - 8.22 (m, 2H), 7.72 - 7.68 (m, 2H), 7.64 - 7.60 (m, 1H), 7.44 - 7.39 (m, 2H), 7.29 - 7.27 (m, 1H), 6.45 (s, 1H), 4.26 (s, 3H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 161.4, 149.0, 147.4, 135.9, 133.9, 132.6, 129.7, 129.6, 128.1, 123.8, 122.2, 121.6, 93.2, 91.5, 78.5, 60.4, 52.3; **IR** (KBr,

cm⁻¹) 3228, 2991, 1765, 1647, 1631, 1377, 1242, 1108, 1053, 913, 852, 743, 643; **HRMS** (ESI) Calcd for $C_{21}H_{15}NNaO_7 (M+Na)^+ 416.0741$, found 416.0742.

The substrate 1p was synthesized through the following synthetic route.

Step 1:

To a magnetically stirred solution of **S1** (0.92 g, 5 mmol, 1.0 eq) in THF was added Pd(PPh₃)₂Cl₂ (3.0 mol %) and CuI (5.0 mol %) under nitrogen atmosphere. After stirred for 5 min, the trimethylsilylacetylene (0.6 g, 6 mmol, 1.2 eq) and NEt₃ were added. The resulting mixture was stirred at 60 \degree for 8 h. After the reaction was finished, the mixture was filtered by short silica, then the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate (PE/EA = 30/1) as the eluent to afford **S2** (0.96 g, 4.75 mmol).

Step 2:

To a magnetically stirred solution of **S2** (0.96 g, 4.75 mmol, 1.0 eq) in DMF was added KF \cdot 2H₂O (1.34 g, 14.25 mmol, 3.0 eq), the mixture was stirred at room temperature for for 1 h. After the reaction was finished, the resultant mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica using petroleum ether and ethyl acetate (PE/EA = 30/1) as the eluent to give **S3** (605 mg, 4.65 mmol).

Step 3:

To a magnetically stirred solution of **S3** (605 mg, 4.65 mmol, 1.0 eq) in THF was added Pd(PPh₃)₂Cl₂ (3.0 mol %) and CuI (5.0 mol %) under nitrogen atmosphere. Then, the 2-bromofuran (0.81 g, 5.6 mmol, 1.2 eq) and NEt₃ were added. The resulting mixture was stirred at 60 °C for 8 h. After the reaction was finished, the mixture was filtered by short silica, then the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate (PE/EA = 20/1) as the eluent to afford **S4** (0.85 g, 4.32 mmol).

Step 4:

Procedure for the synthesis of **1p** was identical to the literature.¹

Methyl 2-(2-(furan-2-ylethynyl)phenyl)-4-methoxy-5-oxo-2,5-dihydrofuran-3-carboxylate (1p)

Yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.2$, 370 mg, yield = 34% (4 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.55 (m, 1H), 7.43 (s, 1H), 7.37 – 7.32 (m, 2H), 7.22 – 7.17 (m, 1H), 6.72 (d, *J* = 3.4 Hz, 1H), 6.45 (s, 1H), 6.44 – 6.42 (m, 1H), 4.28 (s, 3H), 3.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 161.4, 148.9, 144.1, 136.7, 135.5, 133.3, 129.4, 129.1, 127.7, 122.5,

121.5, 116.2, 111.3, 90.3, 85.1, 78.2, 60.4, 52.2; **IR** (KBr, cm⁻¹) 3449, 3147, 3009, 2955, 2207, 1776, 1718, 1658, 1572, 1447, 1388, 1301, 1231, 1168, 1117, 995, 930, 879, 821, 756, 594; **HRMS** (ESI) Calcd for $C_{19}H_{14}NaO_6$ (M+Na)⁺ 361.0683, found 361.0685.

Methyl 2-(4,5-dimethoxy-2-(phenylethynyl)phenyl)-4-methoxy-5-oxo-2,5-dihydrofuran-3-carbox -ylate (1s)

Yellow solid, m.p. = 113-114 °C, purified by chromatography (petroleum/ethyl acetate = 3/1), $R_f = 0.3$, 280 mg, yield = 33% (2 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 7.38 – 7.32 (m, 3H), 7.04 (s, 1H), 6.60 (s, 1H), 6.50 (s, 1H), 4.23 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 161.6, 149.8, 149.7, 148.6, 131.7, 128.6, 128.5,

128.4, 123.0, 122.0, 116.2, 115.4, 109.9, 93.8, 86.5, 78.4, 60.2, 56.2, 56.1, 52.2; **IR** (KBr, cm⁻¹) 3652, 3058, 3006, 2955, 2857, 2205, 1769, 1719, 1658, 1597, 1573, 1520, 1462, 1389, 1355, 1301, 1251,

1208, 1177, 1158, 1116, 1091, 1027, 990, 911, 865, 829, 758, 735, 692, 651, 631, 566, 534, 497; **HRMS** (ESI) Calcd for C₂₃H₂₁O₇ (M+H)⁺ 409.1282, found 409.1284.

Methyl 4-methoxy-5-oxo-2-(6-(phenylethynyl)benzo[d][1,3]dioxol-5-yl)-2,5-dihydrofuran-3-carboxylate (1t)

Yellow solid, m.p. = 152-153 °C, purified by chromatography (petroleum/ethyl acetate = 4/1), $R_f = 0.3$, 350 mg, yield = 31% (2 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.50 (m, 2H), 7.36 – 7.33 (m, 3H), 6.99 (s, 1H), 6.60 (s, 1H), 6.54 (s, 1H), 6.00 (s, 2H), 4.25 (s, 3H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 161.4, 148.5, 148.4, 131.5, 130.2, 128.5, 128.4, 122.8, 121.7,

117.5, 112.2, 106.8, 101.9, 93.6, 86.2, 77.8, 60.2, 52.1; **IR** (KBr, cm⁻¹) 3119, 3011, 2950, 2897, 2361, 2319, 2247, 2181, 1777, 1717, 1658, 1598, 1495, 1379, 1239, 1122, 1041, 989, 937, 868, 775, 732, 638, 579; **HRMS** (ESI) Calcd for C₂₂H₁₆NaO₇ (M+Na)⁺ 415.0788, found 415.0792.

1.3.2 General procedure for 1aa - 1ah

Step 1:

To a magnetically stirred solution of appropriate iodobenzene (1.0 eq) in THF were added Pd(PPh₃)₂Cl₂ (3.0 mol %) and CuI (5.0 mol %) under nitrogen atmosphere. After stirred for 5 min, the **S1** (1.0 eq) and NEt₃ were added. The resulting mixture was stirred at room temperature for 4 h. After the reaction was finished, the mixture was filtered by short silica, then the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate (PE/EA = 5/1) as the eluent to afford the desired product **S2**.

Step 2:

To a solution of **S2** (1.0 eq) and CuI (5.0 mol %) in THF (20 mL) was added a 3.0 M MeMgBr (2.5 eq) at 0 °C. Upon complete addition of Grignard reagent, the mixture was allowed up to room temperature and vigorously stirred for the desired period of time. The dark green mixture was then cooled to -78 °C and then added a dolution of I_2 (2.0 eq) in THF (15 mL). After warming up to room temperature and stirring at room temperature for 1 h, the resulting reaction mixture was cooled to 0 °C and quench with sat. NH₄Cl. The mixture was warmed to room temperature and extracted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduce pressure. The residue was purified by flash chromatography on silica using petroleum ether and ethyl acetate (PE/EA = 15/1) as the eluent to give **S3** as a yellow oil.

Step 3:

To a magnetically stirred solution of **S3** (1.0 eq) in DCM was added MnO_2 (10 eq). The resulting mixture was stirred at room temperature for 3 h. After the reaction was finished, the mixture was filtered by short silica, then the solvent was evaporated under reduced pressure and the crude material

was used without any further purification. NIS (2.5 eq) and K_2CO_3 (2.5 eq) were added to a solution of the crude alcohol (1.0 eq) in MeOH. Then the reaction mixture was stirred in dark place at room temperature for 12h. Water and $Na_2S_2O_3$ were added to destroy any remaining NIS or hypoiodite species. The resultant mixture was extracted with 3 X 5 mL ether. The combined organic extracts were washed with brine, and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica using petroleum ether and ethyl acetate (PE/EA = 100/1) as the eluent to give **S4** as a colourless oil.

Step 4:

To a magnetically stirred solution of **S4** (1.0 eq) in THF was added Pd(PPh₃)₂Cl₂ (2.0 mol %) and CuI (1.0 mol %) under nitrogen atmosphere. After stirred for 5 min, the phenylacetylene (1.2 eq) and NEt₃ were added. The resulting mixture was stirred at 55 °C for 4 h. After the reaction was finished, the mixture was filtered by short silica, then the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate (PE/EA = 20/1) as the eluent to afford **S5**.

Step 5:

Procedure for the synthesis of S6 was identical to the literature.²

Step 6:

To a magnetically stirred solution of **S6** (1.0 eq) in dry DCM was added triphenylphosphine (1.2 eq) at 0 °C under nitrogen atmosphere. After stirred for 5 min, the DCM solution of dimethyl acetylenedicarboxylate (1.2 eq) or diethyl acetylenedicarboxylate (1.2 eq) was added dropwise. Then, the mixture was allowed to stand at room temperature for 24 h. After the reaction was finished, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate (PE/EA = 10/1) as the eluent to afford the desired product **1aa - 1ah**.

Methyl (Z)-2-(3,5-diphenylpent-2-en-4-yn-2-yl)-4-methoxy-5-oxo-2,5-dihydrofuran-3-carboxylate (1aa)

Yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 160 mg, yield = 8% (6 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.29 (m, 10H), 6.65 (s, 1H), 4.27 (s, 3H), 3.84 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 161.7, 148.7, 138.2, 136.6, 131.6, 128.9, 128.7, 128.5, 128.5, 128.0, 127.3, 123.1, 121.3, 96.2, 87.8, 79.8, 60.3, 52.3, 12.9; **IR** (KBr, cm⁻¹) 2952, 1777,

1721, 1658, 1446, 1383, 1300, 1224, 1118, 990, 761, 697; **HRMS** (ESI) Calcd for $C_{24}H_{20}NaO_5$ (M+Na)⁺411.1203, found 411.1208.

Ethyl (Z)-2-(3,5-diphenylpent-2-en-4-yn-2-yl)-4-ethoxy-5-oxo-2,5-dihydrofuran-3-carboxylate (1ab)

Yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 5/1), R_f = 0.4, 130 mg, yield = 6% (6 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.29 (m, 10H), 6.66 (s, 1H), 4.75 – 4.58 (m, 2H), 4.36 – 4.21 (m, 2H), 1.60 (s, 3H), 1.43 (t, *J* = 7.0 Hz, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 161.3, 148.4, 138.2, 136.9, 131.5, 128.9, 128.6, 128.5, 128.4, 128.0, 127.2, 123.1, 121.9,

96.1, 88.0, 79.9, 69.0, 61.5, 15.5, 14.3, 12.8; **IR** (KBr, cm⁻¹) 2985, 1778, 1719, 1654, 1482, 1443, 1383, 1298, 1215, 1119, 1007, 761, 698, 616, 523; **HRMS** (ESI) Calcd for C₂₆H₂₄NaO₅ (M+Na)⁺439.1516,

found 439.1523.

Methyl (Z)-4-methoxy-5-oxo-2-(5-phenyl-3-(p-tolyl)pent-2-en-4-yn-2-yl)-2,5-dihydrofuran-3-carboxylate (1ac)

Yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 121 mg, yield = 10% (6 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.44 (m, 2H), 7.35 – 7.32 (m, 3H), 7.29 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 6.66 (s, 1H), 4.29 (s, 3H), 3.85 (s, 3H), 2.40 (s, 3H), 1.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 161.7, 148.7, 137.9, 136.2, 135.3,

131.6, 129.2, 128.8, 128.6, 128.5, 127.3, 123.2, 121.4, 95.9, 88.0, 79.9, 60.3, 52.3, 21.4, 12.9; **IR** (KBr, cm⁻¹) 3852, 3742, 2952, 1777, 1719, 1659, 1502, 1447, 1382, 1301, 1223, 1117, 989, 910, 823, 762, 691, 516; **HRMS** (ESI) Calcd for $C_{25}H_{22}NaO_5$ (M+Na)⁺ 425.1359, found 425.1363.

Methyl (Z)-2-(3-(4-(tert-butyl)phenyl)-5-phenylpent-2-en-4-yn-2-yl)-4-methoxy-5-oxo-2,5-dihydrofuran-3-carboxylate (1ad)

Yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 185 mg, yield = 15% (6 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.40 (m, 4H), 7.34 - 7.29 (m, 5H), 6.66 (s, 1H), 4.27 (s, 3H), 3.83 (s, 3H), 1.63 (s, 3H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 161.7, 151.1, 148.7, 136.2, 135.1, 131.6, 128.7, 128.6, 128.5, 127.2, 125.3, 123.2,

121.4, 95.9, 88.0, 80.0, 60.3, 52.3, 34.8, 31.4, 12.9; **IR** (KBr, cm⁻¹) 3852, 3741, 3680, 2958, 1777, 1717, 1659, 1448, 1389, 1224, 1116, 989, 910, 837, 760, 693, 587; **HRMS** (ESI) Calcd for $C_{28}H_{28}NaO_5$ (M+Na)⁺ 467.1829, found 467.1834.

Methyl (Z)-4-methoxy-2-(3-(4-methoxyphenyl)-5-phenylpent-2-en-4-yn-2-yl)-5-oxo-2,5-dihydrofuran-3-carboxylate (1ae)

Yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.3$, 120 mg, yield = 9% (6 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 7.33 – 7.30 (m, 5H), 6.94 – 6.90 (m, 2H), 6.64 (s, 1H), 4.26 (s, 3H), 3.83 (s, 6H), 1.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 161.7, 159.3, 148.7, 135.8, 131.5, 130.4, 130.2, 128.6, 128.4, 126.8,

123.1, 121.4, 113.8, 95.8, 88.0, 79.9, 60.3, 55.4, 52.3, 12.9; **IR** (KBr, cm⁻¹) 3835, 3742, 2952, 1776, 1718, 1656, 1608, 1507, 1448, 1386, 1239, 1116, 1029, 987, 833, 761, 690; **HRMS** (ESI) Calcd for $C_{25}H_{22}NaO_6$ (M+Na)⁺441.1309, found 441.1316.

Methyl (Z)-2-(3-(4-chlorophenyl)-5-phenylpent-2-en-4-yn-2-yl)-4-methoxy-5-oxo-2,5-dihydrofuran-3-carboxylate (1af)

Yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 200 mg, yield = 17% (6 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.42 (m, 2H), 7.39 - 7.35 (m, 2H), 7.33 - 7.29 (m, 5H), 6.61 (s, 1H), 4.27 (s, 3H), 3.83 (s, 3H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 161.6, 148.8, 137.2, 136.6, 134.0, 131.6, 130.3, 128.8, 128.7, 128.5, 126.2,

122.8, 121.1, 96.4, 87.3, 79.6, 60.3, 52.4, 12.9; **IR** (KBr, cm⁻¹) 2953, 1778, 1720, 1659, 1488, 1447, 1386, 1301, 1226, 1117, 990, 913, 832, 763, 692, 571; **HRMS** (ESI) Calcd for $C_{24}H_{19}CINaO_5 (M+Na)^+$ 445.0813, found 445.0815.

Methyl (Z)-2-(3-(3,5-dimethylphenyl)-5-phenylpent-2-en-4-yn-2-yl)-4-methoxy-5-oxo-2,5-dihydrofuran-3-carboxylate (1ag)

Yellow solid, m.p. = 115-116 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 110 mg, yield = 7% (6 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 7.34 – 7.29 (m, 3H), 6.96 (s, 3H), 6.64 (s, 1H), 4.27 (s, 3H), 3.85 (s, 3H), 2.34 (s, 6H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 161.7, 148.7, 138.1, 138.0, 136.4, 131.6, 129.7, 128.6, 128.4,

127.5, 126.5, 123.2, 121.4, 95.9, 87.9, 79.8, 60.3, 52.4, 21.4, 12.9; **IR** (KBr, cm⁻¹) 3742, 2952, 1777, 1721, 1659, 1600, 1447, 1383, 1300, 1226, 1117, 989, 912, 824, 761, 697, 521; **HRMS** (ESI) Calcd for $C_{26}H_{24}NaO_5$ (M+Na)⁺ 439.1516, found 439.1525.

Methyl (Z)-2-(5-(4-chlorophenyl)-3-phenylpent-2-en-4-yn-2-yl)-4-methoxy-5-oxo-2,5-dihydrofuran-3-carboxylate (1ah)

Brown yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 4/1), $R_f = 0.4$, 126 mg, yield = 12% (6 steps); ¹H NMR (400 MHz, CDCl₃) δ 7.42 - 7.33 (m, 7H), 7.30 - 7.27 (m, 2H), 6.59 (s, 1H), 4.27 (s, 3H), 3.84 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 161.6, 148.8, 138.0, 137.2, 134.7, 132.8, 128.9, 128.8, 128.5, 128.1, 127.1, 121.5, 121.2, 94.9, 88.7, 79.7,

60.3, 52.4, 13.0; **IR** (KBr, cm⁻¹) 3742, 2953, 1778, 1720, 1658, 1488, 1447, 1387, 1301, 1225, 1115, 989, 828, 766, 703; **HRMS** (ESI) Calcd for C₂₄H₁₉ClNaO₅ (M+Na)⁺ 445.0813, found 445.0816.

1.4 General procedure for the synthesis of 3

1.4.1 General procedure for 3a - 3y

In a Schlenk tube with a magnetic bar under nitrogen atmosphere was added SIPrAuCl (5 mol %) and AgBF₄ (5 mol %) in 1,2-dichloroethane (DCE, 2 mL), and then the substrates 1a - 1y (0.2 mmol) were added. The mixture was stirred at 100 °C until the starting materials was completely consumed (monitored by TLC). After that, the mixture was filtered by short silica, the solvent was evaporated by rotary evaporator, and the residue was purified by flash column chromatography on silica gel using petroleum ether and ethyl acetate as elute to afford the pure product 3a - 3y.

Methyl-2a-methoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-bc]furan-2a¹(2H)-carboxylate

(**3**a)

White solid, m.p. = 174 - 175 °C, purified by chromatography (petroleum/ethyl acetate = 6/1), $R_f = 0.4$, 49 mg, yield = 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.73

(d, J = 7.1 Hz, 1H), 7.67 (d, J = 7.5 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.25 – 7.23 (m, 1H), 6.93 (s, 1H), 6.32 (s, 1H), 3.78 (s, 3H), 3.55 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.1, 167.2, 140.2, 139.7, 135.7, 132.7, 132.5, 131.3, 129.5, 129.4, 129.1, 127.9, 127.5, 127.3, 125.2, 121.6, 84.9, 84.8, 63.7, 56.5, 53.1; **IR** (KBr, cm⁻¹) 3856, 3547, 3065, 2953, 2840, 1933, 1782, 1734, 1605, 1483, 1466, 1453, 1435, 1344, 1298, 1261, 1194, 1157, 1082, 1058, 975, 946, 914, 886, 863, 831, 793, 762, 736, 712, 650, 623, 601, 577, 560, 542, 504; **HRMS** (ESI) Calcd for C₂₁H₁₇O₅ (M+H)⁺ 349.1071, found 349.1071.

Methyl-2a-methoxy-4-methyl-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-bc]furan-2a¹(2H)-carb oxylate (3b)

White solid, m.p. = 202 - 203 °C, purified by chromatography (petroleum/ethyl acetate = 6/1), $R_f = 0.4$, 54 mg, yield = 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.5 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.18 – 7.14 (m, 2H), 6.93 (s, 1H), 6.32 (s, 1H), 3.79 (s, 3H), 3.58

(s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 167.3, 140.0, 139.9, 139.3, 134.6, 132.3, 131.3, 130.1, 130.0, 129.2, 128.3, 127.9, 127.3, 125.2, 121.5, 85.0, 84.9, 63.7, 56.5, 53.1, 21.9; **IR** (KBr, cm⁻¹) 3659, 3030, 2953, 2839, 1780, 1732, 1605, 1571, 1495, 1466, 1435, 1344, 1262, 1191, 1153, 1081, 1058, 1020, 966, 916, 879, 841, 819, 795, 766, 735, 704, 661, 623, 601, 563, 519, 492, 449; **HRMS** (ESI) Calcd for C₂₂H₁₉O₅ (M+H)⁺ 363.1227, found 363.1229.

Methyl 4-ethyl-2a-methoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carbo xylate (3c)

Yellow solid, m.p. = 199 - 200 °C, purified by chromatography (petroleum/ethyl acetate = 6/1), $R_f = 0.4$, 54 mg, yield = 72%; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.5 Hz, 1H), 7.58 (d, J = 7.7 Hz, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H), 7.22 - 7.16 (m, 2H), 6.93 (s, 1H), 6.32 (s, 1H), 3.79 (s, 3H),

3.58 (s, 3H), 2.73 (q, J = 7.6 Hz, 2H), 1.30 (t, J = 7.6 Hz, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 172.3, 167.4, 145.4, 140.0, 139.9, 134.7, 132.3, 131.3, 130.2, 129.2, 128.7, 128.0, 127.3, 127.2, 125.2, 121.5, 85.1, 84.8, 63.7, 56.5, 53.1, 29.1, 15.2; **IR** (KBr, cm⁻¹) 3856, 3842, 3753, 3651, 3436, 2965, 2839, 1782, 1733, 1605, 1493, 1465, 1435, 1344, 1298, 1263, 1191, 1154, 1081, 1058, 975, 917, 899, 863, 881, 829, 794, 766, 737, 704, 662, 624, 593, 503; **HRMS** (ESI) Calcd for C₂₃H₂₁O₅ (M+H)⁺ 377.1384, found 377.1383.

Methyl 4-(tert-butyl)-2a-methoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-bc]furan-2a¹(2H)-carboxylate (3d)

White solid, m.p. = 220 - 221 °C, purified by chromatography (petroleum/ethyl acetate = 6/1), $R_f = 0.4$, 57 mg, yield = 71%; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 1.4 Hz, 1H), 7.67 (d, J = 7.5 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.19 (d, J = 7.9 Hz, 1H), 6.93 (s, 1H),

6.32 (s, 1H), 3.79 (s, 3H), 3.57 (s, 3H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 167.4, 152.2, 140.0, 139.9, 134.9, 131.9, 131.3, 130.0, 129.2, 127.6, 127.3, 126.3, 125.1, 124.6, 121.5, 85.3, 84.7, 63.7, 56.4, 53.1, 35.1, 31.4; **IR** (KBr, cm⁻¹) 3653, 2962, 2869, 2839, 1782, 1733, 1604, 1563, 1493, 1467, 1434, 1364, 1344, 1265, 1196, 1159, 1114, 1080, 1057, 966, 917, 899, 881, 826, 793, 763,

702, 661, 627, 613, 596, 505, 453; **HRMS** (ESI) Calcd for $C_{25}H_{25}O_5$ (M+H)⁺ 405.1697, found 405.1697.

Methyl 2a-methoxy-6-methyl-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carboxylate (3e)

White solid, m.p. = 229 - 230 °C, purified by chromatography (petroleum/ethyl acetate = 6/1), $R_f = 0.4$, 51 mg, yield = 71%; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.5 Hz, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.20 (d,

1H), 7.10 (s, 1H), 6.29 (s, 1H), 3.73 (s, 3H), 3.53 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 167.2, 140.2, 140.1, 135.4, 135.0, 132.7, 131.3, 131.3, 130.9, 129.4, 128.7, 127.3, 125.2, 122.5, 121.6, 85.2, 85.0, 63.2, 56.5, 53.1, 19.5; **IR** (KBr, cm⁻¹) 3906, 3856, 3842, 3822, 3807, 3752, 3737, 3713, 3692, 3678, 3651, 3632, 3621, 3040, 2953, 2838, 1978, 1940, 1775, 1732, 1579, 1493, 1468, 1434, 1382, 1344, 1276, 1259, 1199, 1158, 1131, 1099, 1063, 1032, 989, 969, 915, 880, 824, 792, 765, 707, 653, 623, 605, 573, 538, 511, 477, 427; **HRMS** (ESI) Calcd for $C_{22}H_{19}O_5$ (M+H)⁺ 363.1227, found 363.1229.

Methyl 2a,6-dimethoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carboxylat e (3f)

White solid, m.p. = 238 - 239 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.3$, 48 mg, yield = 63%; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.5 Hz, 1H), 7.63 (d, J = 7.7 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.39 – 7.32 (m, 4H), 6.96 – 6.91 (m, 1H), 6.32 (s, 1H), 3.90 (s, 3H), 3.78 (s, 3H), 3.57 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 172.2, 167.3, 155.8, 140.2, 140.0, 134.4, 133.8, 131.3, 129.8, 129.2, 127.2, 121.7, 121.6, 120.0, 119.7, 111.7, 85.1, 85.0, 63.2, 56.5, 55.8, 53.0; **IR** (KBr, cm⁻¹) 3062, 2949, 2841, 2052, 1927, 1780, 1733, 1642, 1583, 1467, 1335, 1268, 1201, 1157, 1063, 969, 909, 882, 826, 752, 637, 566, 504; **HRMS** (ESI) Calcd for $C_{22}H_{19}O_6$ (M+H)⁺ 379.1176, found 379.1178.

Methyl 2a-methoxy-3,5-dimethyl-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carboxylate (3g)

Yellow solid, m.p. = 235 - 236 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 50 mg, yield = 67%; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.5 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 6.95 (s, 1H), 6.89 (s, 1H), 6.83 (s, 1H), 6.33 (s, 1H), 3.67 (s,

3H), 3.61 (s, 3H), 2.56 (s, 3H), 2.30 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.9, 167.7, 140.1, 139.8, 139.7, 138.9, 134.4, 134.2, 134.1, 131.3, 129.3, 127.9, 127.6, 127.3, 126.1, 121.4, 87.3, 84.9, 64.7, 55.2, 53.1, 22.2, 20.9; **IR** (KBr, cm⁻¹) 3652, 2953, 2838, 1778, 1732, 1606, 1567, 1467, 1435, 1378, 1348, 1297, 1264, 1228, 1195, 1156, 1084, 1057, 980, 910, 875, 843, 796, 759, 747, 737, 707, 625, 603, 586, 570, 550, 496, 437; **HRMS** (ESI) Calcd for C₂₃H₂₁O₅ (M+H)⁺ 377.1384, found 377.1383.

Methyl 2a-methoxy-5-methyl-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-bc]furan-2a1(2H)-carboxylate (3h)

Yellow solid, m.p. = 159 - 160 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 62 mg, yield = 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.69 - 7.62 (m, 1H), 7.60 - 7.55 (m, 1H), 7.48 - 7.44 (m, 1H), 7.39 - 7.35 (m, 1H), 7.23 - 7.18 (m, 1H), 7.13 (d, J = 7.4 Hz, 1H), 7.07 (d, J = 6.5 Hz, 1H),

6.91, 6.87 (s, 1H), 6.36, 6.34 (s, 1H), 3.78, 3.70 (s, 3H), 3.60, 3.57 (s, 3H), 2.62, 2.37 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 172.4, 171.6, 167.5, 167.2, 140.3, 140.1, 139.8, 139.63, 139.58, 139.2, 135.7, 134.13, 134.09, 133.6, 132.6, 131.29, 131.27, 130.8, 129.7, 129.5, 129.4, 129.3, 129.2, 128.8, 127.30, 127.26, 126.7, 125.9, 125.3, 121.5, 121.4, 87.2, 84.94, 84.91, 84.7, 64.5, 63.7, 56.3, 55.2, 53.1, 53.0, 22.4, 21.2; **IR** (KBr, cm⁻¹) 3678, 2953, 2839, 1778, 1732, 1607, 1587, 1466, 1435, 1378, 1347, 1264, 1220, 1193, 1156, 1097, 1081, 1061, 978, 951, 912, 876, 844, 821, 793, 760, 738, 706, 624, 601, 568, 550, 493, 433; **HRMS** (ESI) Calcd for C₂₂H₁₉O₅ (M+H)⁺ 363.1227, found 363.1228.

Methyl 2a,4-dimethoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carboxylat e (3i)

White solid, m.p. = 182 - 183 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.3$, 59 mg, yield = 78%; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.5 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.31 (d, J = 2.5 Hz, 1H), 7.19 (d, J = 8.3

Hz, 1H), 6.90 (s, 1H), 6.87 (dd, J = 8.3, 2.6 Hz, 1H), 6.30 (s, 1H), 3.87 (s, 3H), 3.78 (s, 3H), 3.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 167.4, 160.5, 140.0, 139.8, 134.3, 133.3, 131.3, 129.1, 129.0, 127.3, 125.6, 124.9, 121.3, 114.2, 114.1, 85.0, 84.9, 63.5, 56.5, 55.5, 53.1; **IR** (KBr, cm⁻¹) 3902, 3856, 3842, 3823, 3807, 3753, 3737, 3714, 3692, 3678, 3652, 3632, 3621, 2954, 2838, 1778, 1733, 1603, 1572, 1495, 1465, 1432, 1342, 1298, 1264, 1226, 1154, 1079, 1058, 1037, 966, 914, 879, 815, 794, 765, 739, 705, 661, 626, 588, 560, 534, 504; **HRMS** (ESI) Calcd for C₂₂H₁₉O₆ (M+H)⁺ 379.1176, found 379.1177.

Methyl 4-fluoro-2a-methoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carb-oxylate (3j)

Yellow solid, m.p. = 220 - 221 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 39 mg, yield = 53%; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.5 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.50 – 7.45 (m, 2H), 7.39 (t, J = 7.5 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.07 – 7.02 (m, 1H), 6.91 (s, 1H), 6.32 (s,

1H), 3.78 (s, 3H), 3.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 167.0, 163.2 (d, J = 248.7 Hz), 139.9, 139.6, 135.4 (d, J = 2.9 Hz), 135.1 (d, J = 7.9 Hz), 131.4, 129.6, 129.2 (d, J = 8.2 Hz), 128.9 (d, J = 3.3 Hz), 127.4, 124.1, 121.6, 116.1 (d, J = 21.9 Hz), 115.6 (d, J = 24.8 Hz) 84.9, 84.7 (d, J = 1.5 Hz), 63.4, 56.5, 53.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.9; **IR** (KBr, cm⁻¹) 3856, 3753, 3737, 3714, 3693, 3678, 3652, 3632, 2954, 2841, 1781, 1735, 1606, 1587, 1492, 1466, 1434, 1344, 1265, 1239, 1205, 1156, 1100, 1076, 1059, 970, 915, 879, 844, 821, 791, 781, 765, 739, 705, 660, 624, 578, 516; **HRMS** (ESI) Calcd for C₂₁H₁₆O₅F (M+H)⁺ 367.0976, found 367.0980.

Methyl 4-chloro-2a-methoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carb oxylate (3k)

White solid, m.p. = 214 - 215 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 42 mg, yield = 55%; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 1.5 Hz, 1H), 7.68 (d, J = 7.5 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.33 (dd, J = 8.0, 1.5 Hz, 1H), 7.18

(d, J = 8.1 Hz, 1H), 6.90 (s, 1H), 6.33 (s, 1H), 3.78 (s, 3H), 3.58 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 171.4, 166.7, 140.0, 139.4, 136.2, 134.7, 134.1, 131.4, 131.1, 129.6, 129.4, 128.7, 128.0, 127.3, 123.9, 121.6, 84.8, 84.5, 63.5, 56.4, 53.1; **IR** (KBr, cm⁻¹) 3856, 3842, 3823, 3807, 3752, 3737, 3713, 3692, 3678, 3652, 3632, 3066, 2953, 2840, 1780, 1735, 1592, 1562, 1480, 1435, 1409, 1345, 1264, 1194, 1157, 1093, 1077, 1058, 975, 959, 914, 879, 821, 794, 762, 745, 688, 657, 626, 563, 506, 452; **HRMS** (ESI) Calcd for C₂₁H₁₆O₅Cl (M+H)⁺ 383.0681, found 383.0684.

Methyl 4-bromo-2a-methoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carboxylate (3l)

Yellow solid, m.p. = 232 - 233 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 44 mg, yield = 52%; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 1.8 Hz, 1H), 7.68 (d, J = 7.5 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.52 - 7.46 (m, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.11 (d, J = 8.1 Hz,

1H), 6.89 (s, 1H), 6.32 (s, 1H), 3.78 (s, 3H), 3.58 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.6, 166.8, 140.1, 139.5, 136.4, 134.4, 132.6, 131.7, 131.5, 130.9, 129.8, 129.0, 127.4, 124.1, 122.9, 121.7, 84.9, 84.5, 63.6, 56.5, 53.2; **IR** (KBr, cm⁻¹) 3855, 3752, 3713, 3692, 3678, 2953, 2846, 1781, 1735, 1588, 1561, 1477, 1435, 1403, 1345, 1272, 1195, 1157, 1086, 1059, 974, 953, 914, 879, 820, 794, 762, 745, 718, 675, 624, 557, 506; **HRMS** (ESI) Calcd for C₂₁H₁₆O₅Br (M+H)⁺ 427.0176, found 427.0178.

Methyl 6-chloro-2a-methoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carb oxylate (3m)

White solid, m.p. = 243 - 244 °C, purified by chromatography (petroleum/ethyl acetate = 6/1), $R_f = 0.4$, 46 mg, yield = 60%; ¹H NMR (400 MHz, CDCl₃) δ 7. 70 – 7.65 (m, 3H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.34 – 7.29 (m, 2H), 6.34 (s, 1H), 3.77 (s, 3H), 3.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 166.8, 140.3, 139.6, 137.3, 134.8, 132.6, 131.5, 130.7, 130.4, 129.9, 129.5, 127.3,

126.1, 122.0, 121.4, 85.0, 84.9, 63.3, 56.5, 53.2; **IR** (KBr, cm⁻¹) 3056, 2953, 2840, 1937, 1783, 1735, 1563, 1467, 1451, 1439, 1347, 1272, 1200, 1155, 1090, 1060, 981, 956, 916, 876, 856, 832, 794, 766, 736, 705, 652, 624, 593, 570, 534, 495, 434; **HRMS** (ESI) Calcd for $C_{21}H_{16}O_5Cl$ (M+H)⁺ 383.0681, found 383.0686.

Methyl 2a-methoxy-9-methyl-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carboxylate (3q)

Yellow solid, m.p. = 219 - 220 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 51 mg, yield = 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.77 - 7.71 (m, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.41 - 7. 93 (m, 1H), 7.40 - 7.33 (m, 2H), 7.26 - 7.23 (m, 1H), 7.20 (d, J = 7.7 Hz, 1H), 6.92 (s, 1H), 6.30 (s, 1H),

3.78 (s, 3H), 3.57 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 167.3, 141.7, 139.9,

137.6, 135.9, 132.8, 132.5, 130.5, 129.4, 129.0, 127.9, 127.5, 127.0, 124.8, 122.0, 85.0, 84.8, 63.9, 56.4, 53.1, 21.8; **IR** (KBr, cm⁻¹) 3850, 3646, 3543, 22953, 2839, 1783, 1733, 1614, 1483, 1454, 1435, 1379, 1343, 1306, 1262, 1198, 1161, 1115, 1082, 1058, 975, 907, 864, 817, 796, 784, 763, 736, 711, 649, 614, 573, 543, 503; **HRMS** (ESI) Calcd for $C_{22}H_{18}O_5Na$ (M+Na)⁺ 385.1046, found 385.1048.

Methyl 2a,10-dimethoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carboxy-late (3r)

Yellow solid, m.p. = 192 - 193 °C, purified by chromatography (petroleum/ethyl acetate = 4/1), $R_f = 0.4$, 69 mg, yield = 91%; ¹H NMR (400 MHz, CDCl₃) δ 7.76 - 7.70 (m, 1H), 7.49 (d, J = 8.5 Hz, 1H), 7.37 - 7.31 (m, 2H), 7.24 - 7.19 (m, 2H), 7.02 (dd, J = 8.5, 1.9 Hz, 1H), 6.81 (s, 1H), 6.29 (s,

1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 167.3, 161.0, 141.9, 135.3, 133.1, 132.2, 131.9, 129.3, 128.5, 127.6, 127.3, 122.9, 122.7, 118.4, 111.5, 84.8, 84.7, 64.1, 56.4, 55.7, 53.0; **IR** (KBr, cm⁻¹) 3855, 3752, 3652, 3548, 3064, 3001, 2954, 2839, 2540, 2046, 1958, 1784, 1736, 1657, 1610, 1582, 1491, 1459, 1438, 1342, 1256, 1215, 1194, 1154, 1133, 1099, 1081, 1059, 1027, 975, 948, 929, 909, 860, 828, 789, 757, 736, 702, 679, 645, 623, 603, 586, 540, 505, 446; **HRMS** (ESI) Calcd for C₂₂H₁₈O₆Na (M+Na)⁺401.0996, found 401.0999.

Methyl 2a,9,10-trimethoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carboxylate (3s)

Yellow solid, m.p. = 197 - 198 °C, purified by chromatography (petroleum/ethyl acetate = 2/1), $R_f = 0.3$, 57 mg, yield = 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.75 - 7.69 (m, 1H), 7.37 - 7.32 (m, 2H), 7.24 - 7.20 (m, 1H), 7.16 (s, 1H), 7.04 (s, 1H), 6.81 (s, 1H), 6.28 (s, 1H), 3.94 (s, 6H), 3.77 (s, 3H),

3.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 167.4, 152.3, 150.9, 136.0, 133.1, 133.0, 132.9, 132.2, 129.4, 128.6, 127.6, 127.4, 122.7, 109.1, 103.5, 85.2, 84.9, 64.1, 56.5, 56.3, 56.2, 53.1; **IR** (KBr, cm⁻¹) 3064, 2950, 2839, 1778, 1732, 1602, 1499, 1462, 1329, 1264, 1150, 1087, 1000, 956, 902, 857, 749, 631, 582, 545, 501; **HRMS** (ESI) Calcd for C₂₃H₂₁O₇ (M+H)⁺ 409.1282, found 409.1285.

Methyl 2a-methoxy-2-oxo-2a,12b-dihydrobenzo[6,7]furo[4',3',2':8,9]fluoreno[2,3-*d*][1,3]dioxole-2a¹(2*H*)-carboxylate (3t)

White solid, m.p. = 208 - 209 °C, purified by chromatography (petroleum/ethyl acetate = 3/1), $R_f = 0.4$, 56 mg, yield = 72%; ¹H NMR (400 MHz, CDCl₃) δ 7.76 - 7.68 (m, 1H), 7.38 - 7.31 (m, 2H), 7.24 - 7.20 (m, 1H), 7.09 (s, 1H), 6.98 (s, 1H), 6.77 (s, 1H), 6.23 (s, 1H), 6.04 (d, J = 7.3 Hz, 2H), 3.76 (s, 3H), 3.57 (s,

3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.2, 167.3, 150.9, 149.4, 135.5, 134.7, 134.6, 132.8, 132.2, 129.4, 128.7, 127.7, 127.4, 123.1, 107.2, 102.2, 101.6, 84.9, 84.8, 64.2, 56.5, 53.1; **IR** (KBr, cm⁻¹) 3669, 3065, 2959, 2840, 2354, 1782, 1733, 1656, 1602, 1502, 1475, 1368, 1333, 1306, 1272, 1253, 1197, 1158, 1081, 1037, 987, 965, 942, 908, 865, 804, 791, 777, 761, 736, 701, 642, 602, 537, 506, 433; **HRMS** (ESI) Calcd for C₂₂H₁₇O₇ (M+H)⁺ 393.0969, found 393.0971.

Methyl 9-fluoro-2a-methoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-bc]furan-2a¹(2H)-carb oxylate (3u)

Yellow solid, m.p. = 184 - 185 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 33 mg, yield = 45%; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.3 Hz, 1H), 7.67 (dd, J = 8.3, 4.9 Hz, 1H), 7.45 - 7.38 (m, 2H), 7.30 - 7.26 (m, 2H), 7.12 - 7.07 (m, 1H), 6.97 (s, 1H), 6.31 (s, 1H), 3.80 (s, 3H), 3.60 (s,

3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 167.0, 165.0 (d, J = 250.6 Hz), 142.1 (d, J = 9.7 Hz), 136.0 (d, J = 2.5 Hz), 134.9 (d, J = 3.5 Hz), 132.5, 132.3, 129.5 (d, J = 2.8 Hz), 129.0, 128.9, 128.2, 127.6, 126.4, 116.8 (d, J = 23.6 Hz), 108.6 (d, J = 23.7 Hz), 84.9, 84.1, 64.3, 56.5, 53.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -108.7; **IR** (KBr, cm⁻¹) 3856, 3737, 3692, 3678, 3066, 2954, 2840, 1782, 1734, 1611, 1590, 1479, 1437, 1347, 1282, 1261, 1215, 1197, 1158, 1081, 1056, 974, 941, 909, 864, 821, 798, 785, 762, 709, 649, 624, 573, 539, 505; **HRMS** (ESI) Calcd for C₂₁H₁₆O₅F (M+H)⁺ 367.0976, found 367.0977.

Methyl 10-fluoro-2a-methoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-car boxylate (3v)

Yellow solid, m.p. = 190 - 191 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 39 mg, yield = 53%; ¹H NMR (400 MHz, CDCl₃) δ 7.75 - 7.69 (m, 1H), 7.56 (dd, J = 8.4, 4.9 Hz, 1H), 7.41 - 7.34 (m, 3H), 7.24 (d, J = 2.2 Hz, 1H), 7.21 - 7.16 (m, 1H), 6.89 (s, 1H), 6.27 (s, 1H), 3.77 (s, 3H),

3.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 167.0, 163.2 (d, J = 250.7 Hz), 142.1 (d, J = 8.5 Hz), 135.8 (d, J = 2.8 Hz), 134.5, 132.6, 132.1, 129.5, 129.1, 127.9, 127.4, 124.8, 123.1 (d, J = 8.9 Hz), 118.9 (d, J = 23.4 Hz), 114.5 (d, J = 23.2 Hz), 84.8, 84.1 (d, J = 2.1 Hz), 64.2, 56.5, 53.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.3; **IR** (KBr, cm⁻¹) 3651, 3067, 2954, 2840, 1785, 1733, 1658, 1613, 1596, 1485, 1454, 1437, 1341, 1294, 1266, 1250, 1185, 1159, 1133, 1082, 1059, 980, 952, 911, 876, 828, 807, 790, 764, 736, 643, 622, 583, 549, 521, 505, 445; **HRMS** (ESI) Calcd for C₂₁H₁₆O₅F (M+H)⁺ 367.0976, found 367.0979.

Methyl 9-chloro-2a-methoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)-carboxylate (3w)

White solid, m.p. = 205 - 206 °C, purified by chromatography (petroleum/ethyl acetate = 6/1), $R_f = 0.4$, 47 mg, yield = 61%; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.3 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 1.4 Hz, 1H), 7.44 – 7.36 (m, 3H), 7.28 (d, J = 5.6 Hz, 1H), 6.98 (s, 1H), 6.30 (s, 1H), 3.80 (s, 3H), 3.60 (s,

3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 166.9, 141.5, 138.5, 137.7, 134.5, 132.4, 132.2, 129.6, 129.5, 128.4, 128.2, 127.5, 126.4, 121.9, 84.8, 84.0, 63.9, 56.5, 53.2; **IR** (KBr, cm⁻¹) 2953, 2840, 1782, 1734, 1605, 1568, 1463, 1340, 1268, 1199, 1157, 1079, 979, 911, 870, 752, 651, 611, 504, 467; **HRMS** (ESI) Calcd for C₂₁H₁₅O₅FNa (M+Na)⁺ 405.0500, found 405.0504.

Methyl 10-chloro-2a-methoxy-2-oxo-2a,11b-dihydrobenzo[2,3]fluoreno[9,1-bc]furan-2a¹(2H)-ca-rboxylate (3x)

Pale yellow solid, m.p. = 228 - 229 °C, purified by chromatography (petroleum/ethyl acetate = 6/1), $R_f = 0.4$, 50 mg, yield = 65%; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.1 Hz, 1H), 7.66 (d, J = 1.6 Hz, 1H), 7.51 (d, J = 8.2 Hz, 1H), 7.44 (dd, J = 8.2, 1.8 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.26 – 7.21 (m,

1H), 6.92 (s, 1H), 6.27 (s, 1H), 3.77 (s, 3H), 3.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 166.9, 141.7, 138.1, 135.1, 134.5, 132.4, 132.2, 131.7, 129.5, 129.3, 128.1, 127.6, 127.4, 125.7, 122.7, 84.7, 84.0, 63.9, 56.5, 53.2; **IR** (KBr, cm⁻¹) 2951, 2844, 1783, 1734, 1464, 1264, 1158, 1075, 978, 886, 827, 753, 642, 507, 444; **HRMS** (ESI) Calcd for C₂₁H₁₅O₅FNa (M+Na)⁺ 405.0500, found 405.0501.

1.4.2 General procedure for 3aa - 3ah

In a Schlenk tube with a magnetic bar under nitrogen atmosphere was added SIPrAuCl (5 mol %) and AgBF₄ (5 mol %) in 1,2-dichloroethane (DCE, 2 mL), and then the substrates **1aa** – **1ah** (0.2 mmol) were added. The mixture was stirred at 100 °C until the starting materials was completely consumed (monitored by TLC). After that, the mixture was filtered by short silica, the solvent was evaporated by rotary evaporator, and the residue was purified by flash column chromatography on silica gel using petroleum ether and ethyl acetate as elute to afford the pure product **3aa** – **3ah**.

Methyl-9b-methoxy-3-methyl-1-oxo-4-phenyl-2a,9b-dihydrobenzo[5,6]indeno[1,7-*bc*]furan-2a¹ (*1H*)-carboxylate (3aa)

Yellow solid, m.p. = 145-146 °C, purified by chromatography (petroleum/ethyl acetate = 6/1), $R_f = 0.4$, 37 mg, yield = 63%; ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.69 (m, 1H), 7.49 – 7.38 (m, 3H), 7.37 – 7.27 (m, 4H), 7.11 – 7.07 (m, 1H), 6.38 (s, 1H), 5.83 (s, 1H), 3.73 (s, 3H), 3.66 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 167.5, 144.2, 140.6, 139.8, 133.0, 132.7, 132.3, 129.5,

129.3, 128.8, 128.8, 128.6, 127.9, 127.5, 123.1, 89.8, 84.6, 61.0, 56.4, 53.1, 14.8; **IR** (KBr, cm⁻¹) 2974, 2954, 2928, 2849, 1782, 1733, 1626, 1597, 1547, 1482, 1436, 1385, 1360, 1305, 1262, 1195, 1158, 1139, 1082, 1056, 1008, 984, 960, 930, 905, 883, 864, 852, 805, 779, 750, 702, 654, 617, 546, 517, 472, 453; **HRMS** (ESI) Calcd for $C_{24}H_{20}NaO_5$ (M+Na)⁺ 411.1203, found 411.1206.

Ethyl-9b-ethoxy-3-methyl-1-oxo-4-phenyl-2a,9b-dihydrobenzo[5,6]indeno[1,7-*bc*]furan-2a¹(*1H*)-c arboxylate (3ab)

Pale yellow solid, m.p. = 148-149 °C, purified by chromatography (petroleum/ethyl acetate = 6/1), $R_f = 0.4$, 43 mg, yield = 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.3 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.38 – 7.27 (m, 4H), 7.11 – 7.05 (m, 1H), 6.38 (s, 1H), 5.80 (s, 1H), 4.19 – 4.06 (m, 2H), 3.99 – 3.84 (m, 2H), 2.15 (s, 3H), 1.35 (t, J = 6.9 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 173.2, 166.9, 144.3, 140.8, 139.8, 133.2, 133.1, 132.5, 129.9, 129.4, 129.1, 128.7, 128.5, 127.6, 127.5, 123.0, 89.8, 84.1, 64.1, 61.8, 61.3, 15.7, 14.8, 14.0; **IR** (KBr, cm⁻¹) 3741, 2980, 1781, 1731, 1447, 1370, 1259, 1165, 1073, 1016, 930, 856, 745, 704, 653, 507; **HRMS** (ESI) Calcd for C₂₆H₂₅O₅ (M+H)⁺ 417.1697, found 417.1699.

Methyl-9b-methoxy-3-methyl-1-oxo-4-(p-tolyl)-2a,9b-dihydrobenzo[5,6]indeno[1,7-*bc*]furan-2a¹ (*1H*)-carboxylate (3ac)

Yellow solid, m.p. = 152-153 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 38 mg, yield = 65%; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.3 Hz, 1H), 7.35 – 7.27 (m, 3H), 7.25 – 7.23 (m, 3H), 7.09 (d, J = 7.0 Hz, 1H), 6.38 (s, 1H), 5.81 (s, 1H), 3.73 (s, 3H), 3.66 (s, 3H), 2.41 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 167.5, 144.2, 140.8, 139.3, 138.8, 133.1, 132.8, 129.5, 129.4, 129.3, 129.3, 128.6, 127.8, 127.5, 123.0, 90.0, 84.7, 61.0, 56.4,

53.1, 21.5, 14.8; **IR** (KBr, cm⁻¹) 3852, 3742, 2922, 1779, 1733, 1514, 1446, 1263, 1155, 1077, 955, 755, 509; **HRMS** (ESI) Calcd for C₂₅H₂₃O₅ (M+H)⁺ 403.1540, found 403.1545.

Methyl-4-(4-(tert-butyl)phenyl)-9b-methoxy-3-methyl-1-oxo-2a,9b-dihydrobenzo[5,6]indeno[1,7bc]furan-2a¹(1H)-carboxylate (3ad)

Yellow solid, m.p. = 148-149 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 40 mg, yield = 62%; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.5 Hz, 1H), 7.46 (d, J = 8.2 Hz, 2H), 7.35 – 7.27 (m, 4H), 7.11 (d, J = 6.8 Hz, 1H), 6.43 (s, 1H), 5.81 (s, 1H), 3.73 (s, 3H), 3.65 (s, 3H), 2.17 (s, 3H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 167.5, 151.9, 144.1, 140.7, 139.3, 133.1, 132.7, 129.3, 129.2, 129.1, 128.6, 127.8, 127.5, 125.6, 123.1, 90.1, 84.6,

61.0, 56.4, 53.1, 34.9, 31.4, 14.9; **IR** (KBr, cm⁻¹) 3853, 3742, 3617, 2959, 1781, 1733, 1513, 1447, 1264, 1157, 1080, 957, 842, 751; **HRMS** (ESI) Calcd for $C_{28}H_{29}O_5$ (M+H)⁺ 445.2010, found 445.2016.

Methyl-9b-methoxy-4-(4-methoxyphenyl)-3-methyl-1-oxo-2a,9b-dihydrobenzo[5,6]indeno[1,7-*bc*] furan-2a¹(*1H*)-carboxylate (3ae)

Yellow solid, m.p. = 154-155 °C, purified by chromatography (petroleum/ethyl acetate = 4/1), $R_f = 0.3$, 34 mg, yield = 55%; ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.67 (m, 1H), 7.35 – 7.27 (m, 4H), 7.13 – 7.07 (m, 1H), 7.00 – 6.96 (m, 2H), 6.39 (s, 1H), 5.81 (s, 1H), 3.86 (s, 3H), 3.72 (s, 3H), 3.65 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 167.5, 160.0, 143.8, 140.9, 138.7, 133.1, 132.8, 130.9, 129.3, 128.6, 127.8, 127.5, 124.5, 123.1, 114.2, 90.1, 84.7, 61.0, 56.4, 55.5,

53.1, 14.9; **IR** (KBr, cm⁻¹) 3835, 3741, 3680, 2926, 2846, 1778, 1733, 1609, 1512, 1448, 1254, 1162, 1079, 954, 839, 753; **HRMS** (ESI) Calcd for C₂₅H₂₃O₆ (M+H)⁺ 419.1489, found 419.1494.

$\label{eq:methyl-4-(4-chlorophenyl)-9b-methoxy-3-methyl-1-oxo-2a,9b-dihydrobenzo[5,6] indeno[1,7-bc] furan-2a^1(1H)-carboxylate~(3af)$

Yellow solid, m.p. = 151-152 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 36 mg, yield = 57%; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.4 Hz, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.35 – 7.27 (m, 4H), 7.10 (d, J = 7.0 Hz, 1H), 6.35 (s, 1H), 5.81 (s, 1H), 3.72 (s, 3H), 3.66 (s, 3H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 167.4, 143.0, 140.3, 140.3, 134.8, 132.8, 132.7, 130.8, 130.7, 129.4, 129.1, 128.8, 127.9, 127.6, 123.3, 89.6, 84.6, 61.1, 56.4, 53.2,

14.8; **IR** (KBr, cm⁻¹) 3741, 2948, 1780, 1733, 1489, 1447, 1389, 1265, 1159, 1085, 957, 837, 751; **HRMS** (ESI) Calcd for C₂₄H₂₀ClO₅ (M+H)⁺ 423.0994, found 423.0995.

Methyl-4-(3,5-dimethylphenyl)-9b-methoxy-3-methyl-1-oxo-2a,9b-dihydrobenzo[5,6]indeno[1,7-*b c*]furan-2a¹(1*H*)-carboxylate (3ag)

Yellow solid, m.p. = 150-151 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.4$, 38 mg, yield = 61%; ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.69 (m, 1H), 7.35 – 7.27 (m, 2H), 7.12 – 7.09 (m, 1H), 7.04 (s, 1H), 6.93 (s, 2H), 6.38 (s, 1H), 5.81 (s, 1H), 3.73 (s, 3H), 3.67 (s, 3H), 2.37 (s, 6H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 167.5, 144.5, 140.8, 139.5, 138.3, 133.1, 132.7, 132.2, 130.5, 129.3, 128.6, 127.8, 127.5, 127.1, 123.0,

89.9, 84.7, 60.9, 56.4, 53.2, 21.4, 14.8; **IR** (KBr, cm⁻¹) 3852, 3741, 2923, 1781, 1733, 1602, 1447, 1376, 1266, 1158, 1077, 958, 857, 750; **HRMS** (ESI) Calcd for $C_{26}H_{25}O_5$ (M+H)⁺ 417.1697, found 417.1702.

Methyl-8-chloro-9b-methoxy-3-methyl-1-oxo-4-phenyl-2a,9b-dihydrobenzo[5,6]indeno[1,7-*bc*] furan-2a¹(*1H*)-carboxylate (3ah)

Yellow solid, m.p. = 146-147 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.5$, 27 mg, yield = 46%; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 2.0 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.35 – 7.31 (m, 2H), 7.28 – 7.25 (m, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.34 (s, 1H), 5.82 (s, 1H), 3.72 (s, 3H), 3.67 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 167.2, 144.2, 141.2,

140.2, 134.5, 134.3, 132.1, 131.6, 129.5, 129.4, 128.9, 128.8, 128.7, 128.2, 122.1, 89.9, 84.3, 60.9, 56.5, 53.3, 14.9; **IR** (KBr, cm⁻¹) 3852, 3742, 3682, 2924, 1780, 1734, 1464, 1265, 1157, 1088, 955, 890, 703; **HRMS** (ESI) Calcd for C₂₄H₁₉ClNaO₅ (M+Na)⁺ 445.0813, found 445.0816.

1.5 Gram-scale reaction

1.6 General procedure for derivatization reaction of 3a

1.6.1 Procedure for the synthesis of 4.

In a 25 mL Schlenk tube with a magnetic bar was added MeOH (2 mL), then the **3a** (0.2 mmol) and Pd/C (watted with ca. 55 % water) (20 MW %) were added respectively. The mixture was stirred at room temperature under 1 atm of H_2 until the starting materials was completely consumed (monitored by TLC). After the reaction was finished, the mixture was filtered by short silica, then the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel

using petroleum ether and ethyl acetate (PE/EA = 5/1) as the eluent to obtain the desired product 4.

Methyl-2a-methoxy-2-oxo-2a,7,7a,11b-tetrahydrobenzo[2,3]fluoreno[9,1-*bc*]furan-2a¹(2*H*)carboxylate (4)

White solid, m.p. = 144 - 145 °C, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.5$, 49 mg, yield = 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.2 Hz, 1H), 7.37 (d, J = 7.5 Hz, 1H), 7.27 – 7.14 (m, 6H), 6.16 (s, 1H), 4.11 (dd, J = 5.9, 5.4 Hz, 1H), 3.78 (s, 3H), 3.44 – 3.36 (m, 4H), 2.90 (dd, J = 15.0, 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 171.2, 144.1, 137.6,

136.6, 131.1, 130.4, 129.4, 129.0, 128.1, 127.5, 126.8, 125.7, 124.1, 85.8, 81.2, 65.8, 54.0, 52.8, 45.8, 33.5; **IR** (KBr, cm⁻¹) 2946, 2842, 1777, 1737, 1448, 1341, 1298, 1253, 1169, 1093, 988, 754, 658, 536; **HRMS** (ESI) Calcd for C₂₁H₁₈O₅Na (M+Na)⁺ 373.1046, found 373.1049.

1.6.2 Procedure for the synthesis of 5.

In a 25 mL Schlenk tube with a magnetic bar under nitrogen atmosphere was added DMSO (2 mL), and then the **3a** (0.2 mmol) and Lithium bromide hydrate (0.4 mmol) were added respectively. The mixture was stirred at 140 °C until the starting materials was completely consumed (monitored by TLC). The solution was cooled to room temperature, taken up in H₂O (5 mL) and extracted with ethyl acetate (1 X 1 mL and 3 X 1 mL). The combined organic extracts were washed with water and brine, dried over Na₂SO₄, and evaporated to dryness. The residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate (PE/EA = 5/1) as the eluent to afford the products **5**.

2a-methoxy-7,11b-dihydrobenzo[2,3]fluoreno[9,1-bc]furan-2(2aH)-one (5)

Pale yellow viscous oil, purified by chromatography (petroleum/ethyl acetate = 5/1), $R_f = 0.7$, 37 mg, yield = 63%; ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.21 (m, 1H), 7.99 (s, 1H), 7.94 – 7.91 (m, 2H), 7.59 (d, J = 7.3 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.45 – 7.35 (m, 2H), 4.18 (s, 2H), 4.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃)

δ 152.0, 143.5, 142.0, 141.2, 135.1, 128.7, 128.3, 127.8, 127.4, 127.1, 126.0, 125.4, 125.3, 122.1, 120.7, 113.9, 60.6, 60.5, 34.9; **IR** (KBr, cm⁻¹) 3056, 2931, 2846, 1937, 1826, 1730, 1636, 1575, 1501, 1455, 1409, 1332, 1278, 1195, 1140, 1093, 995, 945, 849, 761, 730, 671, 577, 541, 452; **HRMS** (ESI) Calcd for C₁₉H₁₅O₃ (M+H)⁺ 291.1016, found 291.0860.

2. References:

- [1] K. Luo, T. Cao, H. Jiang, L. Chen and S. Zhu, Org. Lett., 2017, 19, 5856-5859.
- [2] S. Zhu, X. Huang, T. Zhao, T. Ma and H. Jiang, Org. Biomol. Chem., 2015, 13, 1225-1233.

3. X-ray diffraction analysis

3.1 Crystal data and structure refinement for 3a

CCDC number Identification code Empirical formula Formula weight Temperature Crystal system Space group

Unit cell dimensions

Volume

Ζ

 ho_{calc} μ F(000)

Crystal size Radiation

Index ranges

Reflections collected Independent reflections

Goodness-of-fit on F²

 2Θ range for data collection

Data / restraints / parameters

Final R indexes [I>=2σ (I)] Final R indexes [all data] Largest diff. peak/hole

$\bigcup_{E=CO_2Me}^{O} \bigcup_{OMe}^{OMe}$	
1586574	
3a	
$C_{21}H_{16}O_5$	
348.34	
100.00(10) K	
monoclinic	
$P2_1/n$	
a = 12.2774(7) Å	$\alpha = 90$ °.
b = 10.4052(7) Å	$\beta = 101.928(5)$ °.
c = 13.0395(7) Å	$\gamma = 90$ °.
1629.82(17) Å ³	
4	
1.420 g/cm ³	
0.102 mm ⁻¹	
728.0	
$0.17 \times 0.12 \times 0.1 \text{ mm}^3$	
MoKa ($\lambda = 0.71073$)	
6.444 to 59.096 $^\circ$	
$-15 \le h \le 12, -7 \le k \le 13,$	$-16 \le l \le 17$
8320	
3801 [$R_{int} = 0.0369, R_{sigma}$	n = 0.0566]
3801/0/237	
1.043	
$R_1 = 0.0510, wR_2 = 0.112$	3
$R_1 = 0.0685, wR_2 = 0.123$	7
0.34/-0.25 e.Å ⁻³	

3.2 Crystal data and structure refinement for 31

The the	
starter of	

 $\bigcup_{E=CO_2Me}^{O} \bigcup_{Br}^{OMe}$

CCDC number	1586587		
Identification code	31		
Empirical formula	$C_{21}H_{15}BrO_5$		
Formula weight	427.24		
Temperature	150.00(10) K		
Crystal system	triclinic		
Space group	P-1		
Unit cell dimensions	a = 8.0941(2) Å	$\alpha = 70.653(2)$ °.	
	b = 9.6765(2) Å	$\beta = 81.146(2)$ °.	
	c = 11.9451(3) Å	γ = 88.316(2) °.	
Volume	871.99(4) Å ³		
Z	2		
ρ calc	1.627 g/cm ³		
μ	3.490 mm ⁻¹		
F(000)	432.0		
Crystal size	$0.18 \times 0.15 \times 0.11 \text{ mm}^3$		
Radiation	$CuK\alpha (\lambda = 1.54184)$		
2Θ range for data collection	7.938 to 148.924 $^\circ$	7.938 to 148.924 °	
Index ranges	$-10 \le h \le 6, -12 \le k \le 11,$	$-10 \le h \le 6, -12 \le k \le 11, -14 \le l \le 14$	
Reflections collected	8346		
Independent reflections	3413 [$R_{int} = 0.0245$, R_{sign}	3413 [$R_{int} = 0.0245$, $R_{sigma} = 0.0234$]	
Data / restraints / parameters	3413/0/246		
Goodness-of-fit on F ²	1.078		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0319, wR_2 = 0.086$	67	
Final R indexes [all data]	$R_1 = 0.0331, wR_2 = 0.08'$	74	
Largest diff. peak/hole	0.33/-0.64 e.Å ⁻³		

3.3 Crystal data and structure refinement for 3aa

	$Me \xrightarrow{O} E = CO_2Me$	
CCDC number	1526307	
Identification code	3aa	
Empirical formula	$C_{24}H_{20}O_5$	
Formula weight	388.40	
Temperature	100.00(10) K	
Crystal system	orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 9.52631(13) Å	$\alpha=90.0\ ^\circ$
	b = 14.5795(3) Å	$\beta=90.0~^\circ$
	c = 26.9344(4) Å	$\gamma=90.0\ ^\circ$
Volume	3740.88(10) Å ³	
Z	8	
ρ_{calc}	1.379 g/cm ³	
μ	0.789 mm ⁻¹	
F(000)	1632.0	
Crystal size	0.28 x 0.24 x 0.18 mm ³	
Radiation	Cu Ka (λ = 1.54184)	
2Θ range for data collection	11.572 to 147.016 $^\circ$	
Index ranges	$-8 \le h \le 11, \text{-}17 \le k \le 14, \text{-}33 \le l \le 32$	
Reflections collected	18297	
Independent reflections	3625 [$R_{int} = 0.0226, R_{sigma} = 0.0135$]	
Data / restraints / parameters	3625 / 0 / 265	
Goodness-of-fit on F ²	1.071	
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0424, wR2 = 0.1071	
Final R indexes [all data]	R1 = 0.0437, wR2 = 0.1081	
Largest diff. peak/hole	0.25/-0.29 e.Å ⁻³	

4. Copies of NMR spectra

S25

 $\begin{array}{c} 7.486\\ 7.430\\ 7.430\\ 7.430\\ 7.430\\ 7.430\\ 7.430\\ 7.420\\ 7.$

S63

