ELECTRONIC SUPPORTING INFORMATION

Galvanic replacement based Cu₂O self-templating strategy for the synthesis and application of Cu₂O–Ag heterostructures, and hollow metallic (Ag, Au-Ag) mesocages

Rangarajan Bakthavatsalam, and Janardan Kundu*

Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.

Figure S1: Crystal structure of Cu_2O with (100), (111) planes, and unit cell structure. The Cu atoms with dangling bonds are highlighted with yellow circles (All representations were obtained using Mercury 3.8 Software).

Figure S2: Powder XRD pattern of i) standard Cu₂O JCPDS file 78-2076, ii) standard Ag JCPDS file 04-0783, iii) Cubic Cu₂O particles, and iv) Cubic Cu₂O-Ag composite hetrostructure.

Figure S3: a) FESEM image of Cu₂O cube before GRR. b-d) FESEM image of cubic Cu₂O-Ag heterostructures after undergoing GRR with increasing [AgNO₃] solution clearly showing increased loading density of Ag NPs decorating the cubic Cu₂O surface.

Figure S4: Zeta potential values measured for different samples under the experimental conditions.

Figure S5: EDS spectrum of the (b) Cubic Cu₂O-Ag heterostructures from the highlighted region of the sample shown in (a) Line-scan EDS analysis of a (c-d) cubic Cu₂O-Ag heterostructure clearly identifying the Ag NPs decorating the surface of Cu₂O particles. TEM image of e) cubic Cu₂O-Ag heterostructure; f) observed lattice fringes from Ag NPs on the cubic Cu₂O-Ag heterostructure.

Figure S6: Effect of nitric acid and 5SSA on the morphology of the heterostructure: a) Cu_2O octahedra undergoing GRR with silver nitrate in presence of a) nitric acid and 5SSA; b) nitric acid only c) 5SSA only; d) magnified view of c).

Figure S7: Effect of different surfactants on the morphology of the attained Cu₂O-Ag heterostructures : a) Oxalic acid, b) Citrate, c) SDS, d) PVP

Reference Raman	SERS	Peak Assignment
1598		$\nu CC(a_1)$
1572	1576	vCC (b ₂)
1490	1475	$vCC + \delta CH(a_1)$
1480		$vCC + \delta CH(a_1)$
1445	1436	$vCC + \delta CH(b_2)$
1403	1390	$\delta CH + \nu CC (b_2)$
1310	1308	ν CC + δ CH (b ₂)
1266		vCH(a ₁)
1206		vCH(a ₁)
1173	1191	δCH(a ₁)
1142	1144	δCH (b ₂)
1118		δCH (b ₂)
1089	1078	$vCS + vCC(a_1)$
1011	1007	$\gamma CC + \gamma CCC (a_1)$
960	950	πCH(a2)
	921	$\pi CH(b_1)$
820	820	$\pi CH(b_1)$
	750	$\pi CH(b_2)$
	723	$\pi CH + \pi CS + \pi CC (b_1)$
633	634	$\gamma CCC(a_1)$

Table S1: Peak frequencies (cm⁻¹) and their assignments for SERS/Raman spectra of p-MA.

v-stretch; δ , γ -bend; π -wag; a_1 , b_2 : in plane mode; a_2 , b_1 : out of plane mode of benzene ring vibrations

Figure S8: SEM images showing selective deposition of tips and edges, followed by facets for Cu₂O octahedral for 5SSA-Ag+ system at increasing concentration. At low concentrations, tips and edges get preferentially decorated (e-i) with no deposition on the facets. At increased concentration, facets start progressively decorating ultimately leading to fully decorated octahedral (a-d) heterostructures. Utilized [AgNO₃] are: h-i) 10mM; e-g) 20mM; d) 50mM; b-c) 75mM; a) 100mM respectively.

Figure S9: a) SERS spectra of p-MA at different concentrations showing the change in the SERS signal, b) Intensity of highlighted peaks (1365, 1430 cm⁻¹) as a function of p-MA concentrations.

Figure S10: SAED pattern collected from a Au-Ag hollow mesocage showing the polycrystalline nature of the Au and Ag NPs comprising the mesocage.

Figure S11: SERS spectra of pMA acquired using i) monometallic Ag and ii) bimetallic Ag-Au hollow mesocages as SERS substrate.

Au-Ag-Cu2O heterostructure			
Cu(ppm)	Ag(PPM)	Au(ppm)	
4119.04	114.62	8.69	
Au-Ag hollow mesocages			
Cu(ppm)	Ag(ppm)	Au(ppm)	
4.5	85.3	8.65	

Table S2: Elemental concentrations as obtained using ICP-AES analysis