Pseudopolymorphism based on 1D metallacyclic chains constructed

from angular zwitterionic ionic ditopic diacid organic linker

Yong-Qing Huang, *^a Zong-Ge Li,^a Huai-Ying Chen,^a Hai-Di Cheng,^a Yang Wang,^a Yong-He Ren,^a Yue Zhao, *^b and Li Liu^c

^aState Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the

Ministry of Science and Technology, Chemical and Environmental Engineering, Shandong University of Science

and Technology, Qingdao 266590, China

^bState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical engineering, Nanjing

National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China

^cSchool of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

Corresponding Author: Dr. Yong-Qing Huang Email: yqhuangskd@163.com

D-H···A	Distance		Angle
	(D…A)	D-H-A	(D-H-A)
1α			
O(6W)-H(6WB)…O(4)#1	2.8252(7)	O(6W)-H(6WB)-O(4)#1	174
O(6W)-H(6WA)····O(3)	2.9476(3)	O(6W)-H(6WA)-O(3)	167
C(1)-H(1A)····O(6W)#2	3.1765(7)	C(1)-H(1A)-O(6W)#2	153
C(5)-H(5A)····O(2)#1	3.0076(7)	C(5)-H(5A)-O(1)#1	128
C(5)-H(5A)····O(1)#3	3.0194(7)	C(5)-H(5A)-O(1)#3	134
C(13)-H(13A)····O(6W)#2	3.4364(8)	C(13)-H(13A)-O(6W)#2	152
1β			
O(1W)-H(1WA)····O(1)#4	2.8640(10)	O(1W)-H(1WA)-O(1)#4	176
O(1W)-H(1WB)O(4)	2.9771(11)	O(6W)-H(6WA)-O(3)	172
C(9)-H(9A)····O(1W)#5	3.3955(12)	C(9)-H(9A)-O(1W)#5	157
C(12)-H(12A)····O(4)#6	3.2950(12)	C(12)-H(12A)-O(4)#6	159
C(13)-H(13A)····O(2)#7	3.1986(11)	C(13)-H(13A)-O(2)#7	167

Table S1 Distances(Å) and angles (°) of hydrogen bonds for 1α and $1\beta^{\rm a}$

^a Symmetry transformations used to generate equivalent atoms: #1 1/4-x, 1/4+y, 1/4+z; #2 1/2-x, -y, -1/2+z; #3 1/4+x, -1/4-y, 1/4+z; #4; #5 x, 1-y, -1/2+z; #6 1/2-x, 3/2-y, 1/2-z; #7 -1/2+x, 1/2-y, z.

Fig. S1 Partial structure in 1α and 1β showing the coordination environment of Cd(II) ion.

Fig. S2 The ¹H NMR spectrum of complex 1α .

Fig. S3. The IR spectra of complexes 1α and $1\beta.$

Fig. S4 TGA plots of complexes 1α and 1β under a N_2 atmosphere.

Fig. S5 Powder X-ray diffraction (PXRD) pattern of complex 1α . a): calculated from single crystal data; b): experimental; c) heated at 180 °C for 3 days; d) the desolvated $1\alpha'$ were soaked in acetone for 3 days.

Fig. S6 The IR spectra of complexes 1β and $1\beta'$.

Fig. S7 Powder X-ray diffraction (PXRD) pattern of complex 1β . a): calculated from single crystal data; b): experimental; c) heated at 180 °C for 1 days; d) the desolvated $1\beta'$ were soaked in water for 3 days.

Fig. S8 Curves of the measured SHG signals of KDP and complex 1α .