Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Simulation of Intermediate Transport in Nanoscale Scaffolds for Multistep Catalytic Reactions

Erica Earl and Scott Calabrese Barton

Supporting Information

Domain Size Study

Figure S1. Effect of domain size, *R*, on simulation results in absence of electrostatic interactions. R was set to 20 nm for this study, which represents a minimal domain size that does not significantly affect yield. Other parameter values given in Table 1.

Analysis of Experimental Data for Fig. 11

Horizontal Axis

To calculate $\mathbf{Da} = k_2 A/D$, the heterogeneous rate constant k_2 (nm s⁻¹) was estimated from experimental rate data, and values of A was assumed to be in the range 0.1–1.0 nm. Unless otherwise noted, the Diffusivity, D, was assumed to be 10⁻⁵ cm² s⁻¹ or 10⁹ nm² s⁻¹.

The heterogeneous rate constant, k_2 , was calculated from a homogeneous first order rate constant, k'_2 (s⁻¹), determined by experiment, using the following conversion:

$$k_2 = \frac{k_2'}{C_{cat}} \frac{10^{24}}{N_A \ 2\pi A^2}$$

where C_{cat} (mol L⁻¹) is the catalyst concentration and $N_A = 6.02 \times 10^{23}$ (molec/mole) is Avogadro's number. The factor 10^{24} accomplishes the volumetric conversion from L to nm³.

Input Data

Reference	k'_2 / s ⁻¹	<i>C_{cat} / nm</i>	\boldsymbol{D} / cm ² s ⁻¹	$ au_0$ / s	τ/s
6. Trujillo	0.031	1.4	10 ⁻⁵	30	10 ^a
10. Lindbladh	0.095	79	10 ⁻⁵	9.5	4.8
19. Zhang	0.012	1	1.7×10 ⁻⁵	137	143
23. Liu	9.5×10 ⁻³	7.8	10 ⁻⁵	105	69

^aMinimum detectable value. Actual value was below detection limit.