Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting Information for

Effects of the locality of a potential derived from hybrid density functionals on Kohn-Sham orbitals and excited states

Jaewook Kim,[†] Kwangwoo Hong,[†] Sang-Yeon Hwang, Seongok Ryu, Sunghwan Choi, and Woo Youn Kim*

Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

[†]Jaewook Kim and Kwangwoo Hong contributed equally to this work.

*E-mail: wooyoun@kaist.ac.kr

1. Atomization energies

Figure S1. Atomization energies of P₂, HF, F₂, and SiH₄ as a function of the exact exchange ratio (a₀) with respect to the ab initio calculations [R. Haunschild, W. Klopper, *J. Chem. Phys.* **2012**, *136*, 164102] which are denoted as "Best".

2. Caricato set - Orbital energy gaps from PBE0HF-a0

Table S1. The orbital energy gaps from PBE0HF- a_0 with various a_0 as an approximation to each excitation energy for the Caricato set. The third column indicates the type of excitations: V and R for valence and Rydberg excitations, respectively. The experimental values were obtained from [M. Caricato, G. W. Trucks, M. J. Frisch, K. B. Wiberg, *J. Chem. Theory Comput.* **2010**, *6* (2), 370–383]. Unit: eV

Malagula	State	Tuna	I	PBE0HF	$f-a_0$ (Or	bital ene	ergy gap)	Erret
Molecule	State	Type	0.0	0.2	0.4	0.6	0.8	1.0	Expi.
	$1^{1}A_{2}$	V	3.52	5.81	8.08	10.27	11.84	13.24	4.00
	$1^{1}B_{2}$	R	5.78	7.35	8.83	10.26	11.66	13.07	7.08
	2^1B_2	R	6.36	7.69	9.07	10.47	11.87	13.27	7.97
	2^1A_1	R	6.34	7.68	9.02	10.38	11.76	13.16	8.14
	2^1A_2	R	6.43	7.75	9.10	10.49	12.31	13.84	8.37
formaldehyde	3^1B_2	R	6.41	7.76	9.12	10.50	11.91	13.33	8.88
_	$1^{1}B_{1}$	V	8.27	10.78	13.25	15.63	17.39	18.96	9.00
	3^1A_2	R	6.88	14.49	9.65	11.05	12.50	14.06	9.22
	4^1B_2	R	6.71	8.10	9.50	10.94	12.38	13.81	9.26
	4^1A_1	R	6.81	8.18	9.57	10.97	12.37	13.79	9.58
	$5^{1}B_{2}$	R	6.76	13.79	9.61	11.01	12.41	13.83	9.63
	$1^{1}A''$	V	3.87	6.12	8.37	10.58	12.52	15.14	4.28
	2^1 A'	R	5.38	6.95	8.45	9.87	11.25	12.63	6.82
1	3 ¹ A'	R	5.89	7.31	8.65	10.00	11.35	12.72	7.46
acetaldehyde	4^{1} A'	R	6.04	7.35	8.70	10.05	11.41	12.77	7.75
	6 ¹ A'	R	6.13	7.49	8.87	10.21	11.57	12.93	8.43
	7 ¹ A'	R	6.23	7.55	8.87	10.22	11.57	12.94	8.69
	$1^{1}A_{2}$	V	3.97	6.18	8.31	10.39	12.53	14.99	4.43
	$1^{1}B_{2}$	R	4.94	2.99	8.11	9.55	10.93	12.29	6.36
	2^1A_2	R	5.73	7.06	8.42	9.70	11.04	12.38	7.36
4	2^1A_1	R	5.63	7.02	8.36	9.69	11.03	12.38	7.41
acetone	2^1B_2	R	5.75	7.06	8.40	9.73	11.07	12.42	7.49
	3^1A_1	R	5.85	7.19	8.50	9.82	11.16	12.50	7.80
	$3^{1}B_{2}$	R	5.78	7.09	8.41	9.78	11.17	12.55	8.09
	$1^{1}B_{1}$	R	5.89	7.18	8.49	9.81	11.14	12.48	8.17
	$1^{1}B_{3u}$	R	6.39	7.51	8.53	9.48	10.41	11.33	7.11
	1^1B_{1u}	V	5.63	7.33	8.87	9.80	10.71	11.63	7.65
	$1^{1}B_{1g}$	R	6.80	7.74	8.65	9.56	10.47	11.38	7.80
	$1^{1}B_{2g}$	R	6.78	7.73	8.65	9.56	10.47	11.38	7.90
	2^1A_g	R	6.92	7.83	8.76	9.68	10.60	11.52	8.28
ethylene	2^1B_{3u}	R	6.86	7.80	8.76	9.74	10.69	11.62	8.62
	3^1B_{3u}	R	7.08	7.99	8.89	9.80	10.72	11.65	8.90
	4^1 B _{3u}	R	7.30	8.27	9.25	10.24	11.22	12.20	9.08
	3^1B_{1g}	R	6.97	7.97	8.92	9.86	10.79	11.72	9.20
	2^1B_{1u}	R	7.09	8.00	9.00	10.46	11.63	12.64	9.33
	5^1B_{3u}	R	7.81	8.81	9.80	10.77	11.73	12.68	9.51
• • •	${}^{1}B_{1}$	R	5.34	6.53	7.62	8.59	9.52	10.44	6.17
isobutene	$^{1}A_{1}$	R	5.23	6.75	7.80	8.70	9.60	10.51	6.7

	1^1B_u	V	3.91	5.42	6.93	8.36	9.22	10.05	5.91
	1^1B_g	R	5.48	6.47	7.37	8.21	9.04	9.87	6.22
trong	2^1A_u	R	5.74	6.65	7.48	8.29	9.10	9.93	6.66
traiis-	2^1B_u	R	5.99	6.80	7.60	8.49	9.49	10.32	7.07
Dutadielle	2^1B_g	R	5.95	6.74	7.57	8.37	9.18	10.00	7.36
	3^1A_g	R	6.18	6.95	7.74	8.54	9.36	10.18	7.62
	3^1B_u	R	6.30	7.08	7.88	8.68	9.85	10.92	8.00
	${}^{1}B_{1}$	V	3.83	6.05	8.05	10.04	12.02	13.76	4.59
nymidina	${}^{1}B_{2}$	V	4.80	6.31	7.80	9.27	10.71	11.90	4.99
pyriaine	${}^{1}A_{2}$	V	4.19	6.42	8.44	10.45	12.38	14.09	5.43
	${}^{1}A_{1}$	V	5.16	6.69	8.20	9.68	11.07	12.23	6.38
	${}^{1}\mathbf{B}_{3u}$	V	3.25	5.23	7.22	9.21	11.15	13.16	3.83
	$^{1}B_{2u}$	V	4.44	5.96	7.46	8.93	10.33	11.76	4.81
pyrazine	$^{1}B_{2g}$	V	4.75	6.92	9.10	11.28	13.41	15.58	5.46
	$^{1}B_{1g}$	V	5.52	7.72	9.93	12.15	14.35	16.28	6.10
	${}^{1}B_{1u}$	V	5.76	7.43	9.09	10.72	12.28	13.85	6.51
	${}^{1}B_{1}$	V	2.79	4.84	6.90	8.97	11.03	13.00	3.60
	${}^{1}A_{1}$	V	4.89	6.45	8.00	9.53	11.02	12.41	5.00
pyridazine	${}^{1}A_{2}$	V	4.78	6.84	8.90	10.96	13.00	14.95	5.30
	${}^{1}B_{1}$	V	5.34	7.44	9.53	11.61	13.66	15.41	6.00
	${}^{1}B_{2}$	V	5.45	7.05	8.63	10.17	11.68	12.88	6.50
	${}^{1}B_{1}$	V	3.58	5.59	7.60	9.62	11.75	13.55	3.85
	$^{1}A_{2}$	V	3.92	5.95	7.99	10.03	12.05	13.74	4.62
nyminaidina	${}^{1}B_{2}$	V	5.01	6.58	8.13	9.66	11.30	12.60	5.12
pyrimaine	$^{1}A_{2}$	V	4.83	6.92	9.01	11.09	13.28	15.14	5.52
	${}^{1}B_{1}$	V	5.17	7.28	9.39	11.50	13.58	15.33	5.90
	${}^{1}A_{1}$	V	5.35	6.94	8.51	10.07	11.60	12.79	6.70
	${}^{1}B_{3u}$	V	1.53	3.60	5.68	7.78	9.89	12.02	2.25
atotrozina	${}^{1}A_{u}$	V	2.70	4.84	6.99	9.15	11.29	13.47	3.40
s-tetrazine	$^{1}A_{u}$	V	4.35	6.44	8.53	10.63	12.73	14.84	5.00
	${}^{1}\mathbf{B}_{3u}$	V	5.52	7.68	9.84	12.00	14.13	16.29	6.34
Mean absolute error (total)		1.30	1.05	1.74	3.20	4.66	6.07		
Mean absolute error (valence)		0.75	1.27	3.14	5.04	6.85	8.55		
Mean absolute error (Rydberg)		1.73	0.89	0.67	1.80	2.98	4.15		

3. Caricato set – Orbital energy gaps from PBE0KLI-a0

Table S2. The orbital energy gaps from PBE0KLI- a_0 with various a_0 as an approximation to each excitation energy for the Caricato set. The third column indicates the type of excitations: V and R for valence and Rydberg excitations, respectively. See **Table S1** for the experimental values. Unit: eV

Malagula	Ctata	Trues	PBE0KLI- a_0 (Orbital energy gap)0.00.20.40.50.60.83.463.593.763.773.833.955.836.416.957.227.487.986.677.237.768.008.248.696.617.287.908.228.529.106.927.538.128.428.709.277.468.138.749.059.349.888.078.248.478.488.568.717.738.449.149.509.8410.547.668.369.049.399.7310.398.238.949.6410.0210.3811.107.718.469.209.599.9710.733.843.994.144.214.284.425.385.926.426.666.907.345.946.557.127.397.668.166.336.967.557.828.098.606.907.568.198.508.799.357.077.788.478.809.139.763.934.114.324.354.444.594.965.495.976.216.446.875.936.567.147.447.728.245.726.376.967.267.538.066.537.227.858.16 <td< th=""><th></th></td<>						
Molecule	State	Type	0.0	0.2	0.4	0.5	0.6	0.8	1.0
	$1^{1}A_{2}$	V	3.46	3.59	3.76	3.77	3.83	3.95	4.28
	$1^{1}B_{2}$	R	5.83	6.41	6.95	7.22	7.48	7.98	8.49
	$2^{1}B_{2}$	R	6.67	7.23	7.76	8.00	8.24	8.69	9.17
	2^1A_1	R	6.61	7.28	7.90	8.22	8.52	9.10	9.75
	2^1A_2	R	6.92	7.53	8.12	8.42	8.70	9.27	10.00
formaldehyde	3^1B_2	R	7.46	8.13	8.74	9.05	9.34	9.88	10.55
	$1^{1}B_{1}$	V	8.07	8.24	8.47	8.48	8.56	8.71	9.00
	3^1A_2	R	7.73	8.44	9.14	9.50	9.84	10.54	11.52
	4^1B_2	R	7.66	8.36	9.04	9.39	9.73	10.39	11.27
	4^1A_1	R	8.23	8.94	9.64	10.02	10.38	11.10	12.20
	$5^{1}B_{2}$	R	7.71	8.46	9.20	9.59	9.97	10.73	11.86
	$1^{1}A''$	V	3.84	3.99	4.14	4.21	4.28	4.42	4.75
	2^1 A'	R	5.38	5.92	6.42	6.66	6.90	7.34	7.78
aastaldahyda	3 ¹ A'	R	5.94	6.55	7.12	7.39	7.66	8.16	8.66
acetaidenyde	4^1 A'	R	6.33	6.96	7.55	7.82	8.09	8.60	9.10
	6 ¹ A'	R	6.90	7.56	8.19	8.50	8.79	9.35	9.98
	$7^{1}A'$	R	7.07	7.78	8.47	8.80	9.13	9.76	10.51
	$1^{1}A_{2}$	V	3.93	4.11	4.32	4.35	4.44	4.59	4.91
	$1^{1}B_{2}$	R	4.96	5.49	5.97	6.21	6.44	6.87	7.27
	2^1A_2	R	5.93	6.56	7.14	7.44	7.72	8.24	8.77
acatona	$2^{1}A_{1}$	R	5.72	6.37	6.96	7.26	7.53	8.06	8.57
acetone	$2^{1}B_{2}$	R	6.04	6.69	7.31	7.62	7.91	8.50	9.09
	3^1A_1	R	6.53	7.22	7.85	8.16	8.46	9.00	9.55
	$3^{1}B_{2}$	R	6.28	6.90	7.45	7.74	7.99	8.41	8.86
	$1^{1}B_{1}$	R	6.58	7.29	7.96	8.29	8.60	9.18	9.74
	$1^{1}B_{3u}$	R	6.46	6.85	7.21	7.40	7.58	7.91	8.04
	1^1B_{1u}	V	5.65	5.73	5.79	5.84	5.88	5.95	5.98
	1^1B_{1g}	R	7.01	7.47	7.89	8.12	8.32	8.70	8.91
	$1^{1}B_{2g}$	R	6.95	7.43	7.86	8.09	8.31	8.72	8.95
	2^1A_g	R	7.33	7.73	8.10	8.31	8.49	8.86	9.14
ethylene	2^1B_{3u}	R	7.79	8.28	8.68	8.89	9.07	9.39	9.59
	3^1B_{3u}	R	7.99	8.42	8.86	9.12	9.36	9.82	10.23
	4^1B_{3u}	R	8.26	8.75	9.23	9.50	9.74	10.23	10.78
	3^1B_{1g}	R	8.55	9.01	9.44	9.67	9.88	10.28	10.70
	$2^{1}B_{1u}$	R	8.12	8.60	9.06	9.31	9.55	10.01	10.54
	$5^{1}B_{3u}$	R	9.30	9.74	10.12	10.34	10.53	10.91	11.37
isobutene	${}^{1}B_{1}$	R	5.37	5.74	6.08	6.24	6.40	6.70	6.84
1500010110	$^{1}A_{1}$	R	5.23	5.34	5.43	5.47	5.51	5.58	5.65
	1^1B_u	V	3.93	3.98	4.02	4.06	4.09	4.14	4.18

1^1B_g	R	5.55	5.93	6.26	6.45	6.62	6.93	7.03
2^1A_u	R	5.84	6.24	6.60	6.78	7.00	7.34	7.49
2^1B_u	R	6.35	6.71	7.04	7.23	7.40	7.74	7.96
2^1B_g	R	6.53	6.99	7.40	7.63	7.84	8.21	8.36
3^1A_g	R	6.86	7.23	7.58	7.78	7.96	8.32	9.29
3^1B_u	R	7.52	7.96	8.36	8.59	8.80	9.21	9.62
${}^{1}B_{1}$	V	3.99	4.08	4.18	4.22	4.27	4.35	4.62
$^{1}B_{2}$	V	4.82	4.83	4.83	4.85	4.86	4.87	4.85
$^{1}A_{2}$	V	4.36	4.48	4.58	4.65	4.71	4.81	5.11
${}^{1}A_{1}$	V	5.19	5.23	5.23	5.28	5.30	5.33	5.34
${}^{1}\mathbf{B}_{3u}$	V	3.19	3.25	3.32	3.33	3.36	3.41	3.66
${}^{1}\mathbf{B}_{2u}$	V	4.46	4.45	4.43	4.44	4.43	4.42	4.38
${}^{1}\mathbf{B}_{2g}$	V	4.67	4.76	4.89	4.89	4.93	5.01	5.22
${}^{1}\mathbf{B}_{1g}$	V	5.45	5.59	5.74	5.79	5.85	5.98	6.25
${}^{1}\mathbf{B}_{1u}$	V	5.71	5.75	5.82	5.81	5.83	5.87	5.86
${}^{1}B_{1}$	V	2.69	2.80	2.87	2.94	2.99	3.08	3.37
${}^{1}A_{1}$	V	4.87	4.89	4.90	4.91	4.91	4.93	4.91
${}^{1}A_{2}$	V	4.68	4.76	4.88	4.88	4.92	4.98	5.22
${}^{1}B_{1}$	V	5.27	5.38	5.49	5.53	5.58	5.67	5.94
$^{1}B_{2}$	V	5.46	5.50	5.52	5.56	5.58	5.61	5.63
${}^{1}B_{1}$	V	3.48	3.58	3.67	3.72	3.76	3.85	4.13
$^{1}A_{2}$	V	3.84	3.96	4.06	4.13	4.18	4.29	4.60
$^{1}B_{2}$	V	5.00	5.02	5.03	5.04	5.05	5.07	5.07
$^{1}A_{2}$	V	4.73	4.82	4.91	4.95	5.00	5.08	5.34
${}^{1}B_{1}$	V	5.08	5.20	5.30	5.36	5.42	5.52	5.80
${}^{1}A_{1}$	V	5.36	5.40	5.42	5.45	5.47	5.51	5.53
${}^{1}\mathbf{B}_{3u}$	V	1.42	1.49	1.55	1.58	1.61	1.67	1.94
$^{1}A_{u}$	V	2.64	2.76	2.83	2.93	2.98	3.09	3.43
$^{1}A_{u}$	V	4.25	4.29	4.38	4.34	4.36	4.39	4.59
${}^{1}\mathbf{B}_{3u}$	V	5.47	5.56	5.65	5.69	5.73	5.81	6.08
Mean absolute error (total)		1.01	0.67	0.40	0.38	0.48	0.72	0.95
Mean absolute error (valence)		0.78	0.70	0.62	0.58	0.54	0.49	0.40
Mean absolute error (Rydberg)		1.18	0.65	0.23	0.23	0.43	0.89	1.38
	$\frac{1^{1}B_{g}}{2^{1}A_{u}}$ $\frac{2^{1}B_{u}}{2^{1}B_{g}}$ $\frac{3^{1}A_{g}}{3^{1}B_{u}}$ $\frac{1^{1}B_{1}}{1^{1}B_{2}}$ $\frac{1^{1}A_{2}}{1^{1}B_{1}}$ $\frac{1^{1}B_{2}g}{1^{1}B_{1}g}$ $\frac{1^{1}B_{1}g}{1^{1}B_{1}}$ $\frac{1^{1}B_{1}}{1^{1}A_{2}}$ $\frac{1^{1}B_{2}}{1^{1}A_{2}}$ $\frac{1^{1}B_{2}}{1^{1}A_{2}}$ $\frac{1^{1}B_{3}}{1^{1}A_{3}}$ $\frac{1^{1}A_{3}}{1^{1}B_{3}}$ $\frac{1^{1}B_{3}}{1^{1}B_{3}}$ $\frac{1^{1}B_{3}}{1^{1}B_{3}}$ $\frac{1^{1}B_{3}}{1^{1}B_{3}}$ $\frac{1^{1}B_{3}}{1^{1}B_{3}}$ $\frac{1^{1}B_{3}}{1^{1}B_{3}}$ $\frac{1^{1}B_{3}}{1^{1}B_{3}}$ $\frac{1^{1}B_{3}}{1^{1}B_{3}}$	$\begin{array}{c c c c c c } 1^1B_g & R \\ 2^1A_u & R \\ 2^1B_u & R \\ 2^1B_g & R \\ 3^1A_g & R \\ 3^1A_g & R \\ 3^1B_u & R \\ \hline & & & & \\ 3^1B_u & R \\ \hline & & & & \\ 1B_1 & V \\ \hline & & & & \\ 1B_2 & V \\ \hline & & & & \\ 1B_2 & V \\ \hline & & & & \\ 1B_2 & V \\ \hline & & & & \\ 1B_2 & V \\ \hline & & & & \\ 1B_2 & V \\ \hline & & & & \\ 1B_1 & V \\ \hline & & & & \\ 1B_1 & V \\ \hline & & & & \\ 1B_1 & V \\ \hline & & & & \\ 1B_1 & V \\ \hline & & & & \\ 1B_1 & V \\ \hline & & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_2 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_2 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_2 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_2 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_2 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & & \\ 1B_2 & V \\ \hline & & & \\ 1B_1 & V \\ \hline & & \\ 1B_2 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_2 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_2 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_2 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_2 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_2 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_2 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_2 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_1 & V \\ \hline & & \\ 1B_2 & V \\ \hline & & \\ 1B_1 & V \\ \hline $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

4. Caricato set – TDDFT results from PBE0HF-a₀

Table S3. The excitation energies of the Caricato set from TDDFT calculations performed on PBE0HF-*a*₀ orbitals with various *a*₀. The third column indicates the type of excitations: V and R for valence and Rydberg excitations, respectively. See **Table S1** for the experimental values. Unit: eV

Mologula	Stata	Tuna	PBE0HF- a_0 (TDDFT)0.00.20.40.60.81.03.783.883.984.104.224.375.766.517.257.988.689.356.367.247.998.729.4110.06.337.228.048.839.449.446.427.358.229.049.8310.66.407.418.459.4610.4211.38.839.019.179.339.489.626.867.758.729.7410.8111.26.717.648.649.6410.5911.46.817.788.759.6810.6411.56.767.758.789.7510.6711.54.114.224.334.464.604.755.436.257.047.808.539.225.886.737.588.419.199.446.056.967.798.599.279.996.127.188.239.1510.0410.86.227.238.269.2310.1110.94.204.354.504.664.825.004.945.836.687.518.309.055.726.637.508.359.179.95						
Molecule	State	Type	0.0	0.2	0.4	0.6	0.8	1.0	
	$1^{1}A_{2}$	V	3.78	3.88	3.98	4.10	4.22	4.37	
	$1^{1}B_{2}$	R	5.76	6.51	7.25	7.98	8.68	9.35	
	$2^{1}B_{2}$	R	6.36	7.24	7.99	8.72	9.41	10.08	
	$2^{1}A_{1}$	R	6.33	7.22	8.04	8.83	9.44	9.44	
	2^1A_2	R	6.42	7.35	8.22	9.04	9.83	10.61	
formaldehyde	3^1B_2	R	6.40	7.41	8.45	9.46	10.42	11.30	
	$1^{1}B_{1}$	V	8.83	9.01	9.17	9.33	9.48	9.62	
	3 ¹ A ₂	R	6.86	7.75	8.72	9.74	10.81	11.24	
	4^1B_2	R	6.71	7.64	8.64	9.64	10.59	11.49	
	4^1A_1	R	6.81	7.78	8.75	9.68	10.64	11.56	
	5^1B_2	R	6.76	7.75	8.78	9.75	10.67	11.57	
	$1^{1}A''$	V	4.11	4.22	4.33	4.46	4.60	4.75	
	$2^{1}A'$	R	5.43	6.25	7.04	7.80	8.53	9.22	
aastaldabyda	3 ¹ A'	R	5.88	6.73	7.58	8.41	9.19	9.44	
acetaidenyde	4^{1} A'	R	6.05	6.96	7.79	8.59	9.27	9.99	
	6 ¹ A'	R	6.12	7.18	8.23	9.15	10.04	10.89	
	$7^{1}A'$	R	6.22	7.23	8.26	9.23	10.11	10.97	
	$1^{1}A_{2}$	V	4.20	4.35	4.50	4.66	4.82	5.00	
	$1^{1}B_{2}$	R	4.94	5.83	6.68	7.51	8.30	9.05	
	2^1A_2	R	5.72	6.63	7.50	8.35	9.17	9.95	
acatona	$2^{1}A_{1}$	R	5.65	6.57	7.48	8.36	9.15	9.43	
accione	$2^{1}B_{2}$	R	5.75	6.68	7.55	8.40	9.23	10.05	
	3^1A_1	R	5.86	6.92	7.96	8.91	9.50	10.18	
	3^1B_2	R	5.78	6.79	7.79	8.73	9.61	10.46	
	$1^{1}B_{1}$	R	5.89	6.94	7.98	8.96	9.53	9.74	
	1^1 B _{3u}	R	6.38	6.72	7.04	7.35	7.65	7.93	
	1^1B_{1u}	V	7.07	7.43	7.53	7.57	7.60	7.60	
	1^1B_{1g}	R	6.79	7.23	7.59	7.93	8.26	8.56	
	1^1B_{2g}	R	6.77	7.22	7.63	8.02	8.39	8.76	
	$2^{1}A_{g}$	R	6.92	7.42	7.87	8.28	8.65	9.00	
ethylene	2^1B_{3u}	R	6.86	7.50	8.10	8.64	9.10	9.50	
	3^1B_{3u}	R	7.08	7.68	8.26	8.80	9.32	9.76	
	4^1B_{3u}	R	7.29	7.85	8.40	8.93	9.40	9.86	
	3^1B_{1g}	R	7.41	7.96	8.30	8.84	9.42	9.96	
	$2^{1}B_{1u}$	R	7.33	7.73	8.32	8.89	9.43	9.92	
	5^1B_{3u}	R	7.78	8.23	8.71	9.21	9.75	10.33	
isobutene	${}^{1}B_{1}$	R	5.33	5.79	6.22	6.63	7.01	7.37	
	$^{1}A_{1}$	R	5.90	6.33	6.68	6.95	7.14	7.26	
	1^1B_u	V	5.41	5.60	5.77	5.90	6.00	6.07	

	1^1B_g	R	5.46	5.79	6.10	6.41	6.71	7.00
	$2^{1}A_{u}$	R	5.73	6.11	6.37	6.82	7.17	7.50
trans-	2^1B_u	R	6.03	6.44	6.82	7.17	7.49	7.81
butadiene	2^1B_g	R	5.95	6.47	6.97	7.40	7.79	8.16
	3^1A_g	R	6.17	6.65	7.12	7.57	8.00	8.40
	3^1B_u	R	6.31	6.79	7.28	7.76	8.25	8.74
	${}^{1}B_{1}$	V	4.34	4.76	5.11	5.42	5.70	5.97
nymidina	$^{1}B_{2}$	V	5.31	5.49	5.64	5.76	5.86	5.94
pyridine	$^{1}A_{2}$	V	4.44	5.06	5.67	6.25	6.79	7.31
	${}^{1}A_{1}$	V	6.17	6.28	6.38	6.39	6.34	6.25
	${}^{1}B_{3u}$	V	3.54	3.91	4.21	4.47	4.70	4.90
	${}^{1}B_{2u}$	V	5.21	5.35	5.46	5.54	5.59	5.62
pyrazine	$^{1}B_{2g}$	V	5.11	5.58	5.92	6.18	6.39	6.57
	${}^{1}B_{1g}$	V	5.57	6.40	7.23	8.07	8.92	9.76
	${}^{1}B_{1u}$	V	6.37	6.50	6.57	6.56	6.49	6.37
	${}^{1}B_{1}$	V	3.11	3.53	3.89	4.19	4.45	4.67
	$^{1}A_{1}$	V	5.44	5.62	5.78	5.90	6.00	6.07
pyridazine	$^{1}A_{2}$	V	5.01	5.45	5.86	6.26	6.68	7.12
	${}^{1}B_{1}$	V	5.43	6.07	6.66	7.24	7.79	8.33
	${}^{1}B_{2}$	V	6.30	6.36	6.51	6.51	6.43	6.29
	${}^{1}B_{1}$	V	3.77	4.22	4.63	5.01	5.36	5.70
	$^{1}A_{2}$	V	3.99	4.56	5.08	5.57	6.00	6.41
and the state of t	${}^{1}B_{2}$	V	5.57	5.75	5.91	6.05	6.17	6.27
pyrimaine	$^{1}A_{2}$	V	5.08	5.64	6.12	6.55	6.96	7.35
	${}^{1}B_{1}$	V	5.31	5.94	6.53	7.10	7.65	8.17
	$^{1}A_{1}$	V	6.41	6.58	6.68	6.71	6.70	6.65
	${}^{1}B_{3u}$	V	1.82	2.19	2.51	2.78	3.01	3.22
a tatuazina	${}^{1}A_{u}$	V	2.80	3.43	4.03	4.58	5.07	5.48
s-tetrazine	$^{1}A_{u}$	V	4.61	5.07	5.45	5.80	6.12	6.44
s-tetrazine	${}^{1}B_{3u}$	V	5.63	6.28	6.90	7.49	8.05	8.60
Mean absolute e	error (tota	1)	1.13	0.63	0.38	0.56	0.98	1.39
Mean absolute error (valence)		0.40	0.19	0.41	0.67	0.93	1.19	
Mean absolute error (Rydberg)		1.70	0.98	0.35	0.48	1.01	1.55	

Table S4. The excitation energies of the Caricato set from TDDFT calculations performed on PBE0HF- a_0 orbitals with various a_0 . An LDA kernel was used. The third column indicates the type of excitations: V and R for valence and Rydberg excitations, respectively. See **Table S12** for the experimental values. Unit: eV

Molecule	Stata	Tuno		PBE0H	$F-a_0$ (TDI	DFT w/ Ll	DA ker.)	
Molecule	State	Type	0.0	0.2	0.4	0.6	0.8	1.0
	$1^{1}A_{2}$	V	3.64	5.93	8.18	10.32	11.83	13.24
	$1^{1}B_{2}$	R	5.64	7.23	8.76	10.22	11.64	13.05
	$2^{1}B_{2}$	R	6.35	7.68	9.04	10.44	11.85	13.26
	2^1A_1	R	6.30	7.66	9.01	10.38	11.76	13.15
	2^1A_2	R	6.42	7.75	9.10	10.51	12.32	13.83
formaldehyde	3^1B_2	R	6.38	7.75	9.11	10.49	11.89	13.31
	$1^{1}B_{1}$	V	8.64	11.12	13.56	15.79	17.92	20.96
	3^1A_2	R	6.85	8.24	9.64	11.05	12.50	14.04
	4^1B_2	R	6.67	8.07	9.47	10.89	12.34	13.79
	4^1A_1	R	6.78	8.14	9.53	10.93	12.34	13.76
	$5^{1}B_{2}$	R	6.73	8.14	9.59	11.00	12.40	13.81
	$1^{1}A''$	V	3.99	6.24	8.48	10.60	12.51	15.21
	$2^{1}A'$	R	5.36	6.93	8.43	9.86	11.24	12.63
aastaldahyda	3 ¹ A'	R	5.80	7.27	8.64	9.99	11.35	12.71
acetaidenyde	4^{1} A'	R	6.04	7.35	8.70	10.05	11.41	12.77
	6 ¹ A'	R	6.11	7.45	8.84	10.21	11.56	12.93
	7 ¹ A'	R	6.21	7.54	8.87	10.21	11.57	12.93
	$1^{1}A_{2}$	V	4.09	6.30	8.34	10.41	12.53	15.06
	$1^{1}B_{2}$	R	4.90	6.53	8.08	9.54	10.93	12.29
	2^1A_2	R	5.71	7.06	8.47	9.70	11.04	12.38
	$2^{1}A_{1}$	R	5.62	7.02	8.36	9.69	11.03	12.37
acetone	$2^{1}B_{2}$	R	5.74	7.05	8.39	9.73	11.07	12.41
	3 ¹ A ₁	R	5.85	7.19	8.50	9.82	11.15	12.50
	3^1B_2	R	5.77	7.08	8.40	9.77	11.16	12.55
	$1^{1}B_{1}$	R	5.89	7.17	8.48	9.81	11.14	12.48
	1^1B_{3u}	R	6.28	7.43	8.48	9.46	10.39	11.32
	1^1B_{1u}	V	7.00	7.98	8.89	9.80	10.71	11.62
	1^1B_{1g}	R	6.77	7.73	8.65	9.56	10.47	11.38
	1^1B_{2g}	R	6.94	7.94	8.90	9.85	10.78	11.71
	$2^{1}A_{g}$	R	11.50	7.83	8.75	9.67	10.59	11.50
ethylene	2^1B_{3u}	R	6.86	7.78	8.73	9.70	10.66	11.61
	3^1B_{3u}	R	7.08	7.99	8.89	9.80	10.71	11.63
	4^1B_{3u}	R	7.28	8.25	9.23	10.21	11.20	12.17
	3^1B_{1g}	R	7.39	8.39	9.39	10.38	11.35	12.30
	$2^{1}B_{1u}$	R	7.15	8.48	9.63	10.66	11.64	12.61
	$5^{1}B_{3u}$	R	7.75	8.77	9.76	10.73	11.70	12.66
• • •	${}^{1}B_{1}$	R	5.27	6.47	7.58	8.57	9.51	10.44
Isobutene	$^{1}A_{1}$	R	5.83	6.87	7.79	8.69	9.60	10.51
trans-	1^1B_u	V	5.25	6.59	8.68	10.02	9.97	12.77
butadiene	$1^1 \mathbf{B}_g$	R	5.40	6.41	7.34	8.20	9.03	9.86

	$2^{1}A_{u}$	R	5.69	6.63	7.48	8.29	9.10	9.92
	2^1B_u	R	6.02	6.88	7.56	8.39	9.21	10.04
	$2^{1}B_{g}$	R	5.94	6.73	7.55	8.37	9.18	10.00
	3^1A_g	R	6.21	7.42	7.74	8.54	9.35	10.18
	3^1B_u	R	6.30	7.09	7.85	8.67	9.49	10.31
	${}^{1}B_{1}$	V	4.25	6.24	8.23	10.20	12.16	13.77
arridia e	${}^{1}B_{2}$	V	5.24	6.79	8.29	9.80	11.05	11.90
pyriaine	$^{1}A_{2}$	V	4.41	6.42	8.44	10.45	12.38	14.08
	${}^{1}A_{1}$	V	5.99	7.53	9.02	10.41	11.08	12.88
	${}^{1}B_{3u}$	V	3.45	5.43	7.41	9.40	11.16	13.35
	${}^{1}B_{2u}$	V	5.13	6.70	8.22	9.71	10.34	12.22
pyrazine	${}^{1}B_{2g}$	V	5.01	7.17	9.35	11.52	13.43	15.85
	${}^{1}B_{1g}$	V	5.55	7.75	9.98	12.16	14.36	16.36
	${}^{1}B_{1u}$	V	6.19	7.75	9.30	10.74	11.78	13.82
	${}^{1}B_{1}$	V	3.03	5.07	7.12	9.18	11.06	13.01
	$^{1}A_{1}$	V	5.38	6.97	8.55	10.09	11.05	12.42
pyridazine	$^{1}A_{2}$	V	4.92	6.98	9.03	11.08	13.03	15.15
	${}^{1}B_{1}$	V	5.39	7.48	9.57	11.65	13.70	15.94
	${}^{1}\mathbf{B}_{2}$	V	6.11	7.73	9.29	10.81	11.59	13.00
	${}^{1}B_{1}$	V	3.70	5.71	7.72	9.73	11.72	13.61
	$^{1}A_{2}$	V	3.95	5.98	8.02	10.05	12.08	13.89
nymingiding	${}^{1}B_{2}$	V	5.50	7.11	8.69	10.25	11.72	12.78
pyrimaine	$^{1}A_{2}$	V	5.01	7.09	9.17	11.24	13.29	15.21
	${}^{1}B_{1}$	V	5.26	7.37	9.47	11.57	13.64	15.48
	${}^{1}A_{1}$	V	6.23	7.82	9.40	10.90	12.23	13.99
	${}^{1}\mathbf{B}_{3u}$	V	1.74	3.81	5.89	7.99	10.10	12.22
a totrazina	${}^{1}A_{u}$	V	2.76	4.90	7.05	9.20	11.33	13.24
s-tetrazine	${}^{1}A_{u}$	V	4.53	6.61	8.70	10.79	12.89	13.51
	${}^{1}\mathbf{B}_{3u}$	V	5.58	7.74	9.90	12.06	14.17	16.34
Mean absolute e	error (tota	1)	1.21	1.00	1.87	3.33	4.70	6.17
Mean absolute error (valence)		0.47	1.53	3.45	5.31	6.95	8.81	
Mean absolute error (Rydberg)		1.77	0.59	0.66	1.81	2.98	4.14	

5. Caricato set – TDDFT results from PBE0KLI-a₀

Table S5. The excitation energies of the Caricato set from TDDFT calculations performed on PBE0KLI- a_0 orbitals with various a_0 . An LDA kernel was used. The third column indicates the type of excitations: V and R for valence and Rydberg excitations, respectively. See **Table S12** for the experimental values. Unit: eV

Mologulo	State	Tuna	PBE0KLI-a ₀ (TDDFT w/ LDA ker.)							
Molecule formaldehyde acetaldehyde acetone ethylene	State	Type	0.0	0.2	0.4	0.5	0.6	0.8	1.0	
	$1^{1}A_{2}$	V	3.78	3.91	4.07	4.09	4.15	4.26	4.59	
	$1^{1}B_{2}$	R	5.81	6.40	6.95	7.23	7.50	8.01	8.54	
	$2^{1}B_{2}$	R	6.66	7.25	7.79	8.05	8.31	8.78	9.31	
	2^1A_1	R	6.59	7.27	7.90	8.23	8.54	9.13	9.81	
	2^1A_2	R	6.88	7.50	8.08	8.38	8.67	9.23	9.96	
formaldehyde	3^1B_2	R	7.48	8.17	8.80	9.12	9.42	9.99	10.68	
	$1^{1}B_{1}$	V	8.76	8.92	8.96	9.14	9.22	9.36	9.63	
	3^1A_2	R	7.70	8.41	9.11	9.47	9.81	9.89	10.13	
	4^1B_2	R	7.63	8.33	9.01	9.36	9.70	10.36	11.24	
	4^1A_1	R	8.27	8.98	9.68	10.03	10.36	10.92	11.78	
	$5^{1}B_{2}$	R	7.72	8.45	9.20	9.59	9.97	10.72	11.85	
	$1^{1}A''$	V	4.14	4.29	4.44	4.51	4.58	4.72	5.04	
	$2^{1}A'$	R	5.46	6.00	6.50	6.74	6.97	7.42	7.86	
1	3 ¹ A'	R	5.94	6.56	7.15	7.43	7.71	8.23	8.76	
acetaldenyde	4^1 A'	R	6.31	6.95	7.55	7.84	8.11	8.63	9.09	
	6 ¹ A'	R	6.89	7.55	8.18	8.48	8.78	9.11	9.53	
	7^1 A'	R	7.04	7.75	8.44	8.78	9.03	9.37	10.01	
	$1^{1}A_{2}$	V	4.23	4.40	4.61	4.64	4.72	4.87	5.19	
	$1^{1}B_{2}$	R	4.96	5.50	5.99	6.24	6.47	6.91	7.31	
	2^1A_2	R	5.92	6.55	7.14	7.44	7.62	7.66	7.89	
	2^1A_1	R	5.78	6.43	7.02	7.31	7.59	8.10	8.59	
acetone	$2^{1}B_{2}$	R	6.03	6.69	7.31	7.62	7.91	8.43	8.90	
	3^1A_1	R	6.51	7.20	7.85	8.17	8.46	9.01	9.47	
	3^1B_2	R	6.27	6.91	7.48	7.77	8.03	8.55	8.97	
	$1^{1}B_{1}$	R	6.56	7.27	7.95	8.26	8.33	8.40	8.63	
	$1^{1}B_{3u}$	R	6.44	6.84	7.20	7.40	7.57	7.91	8.05	
	1^1B_{1u}	V	7.64	7.96	8.18	8.31	8.40	8.53	8.53	
	1^1B_{1g}	R	6.98	7.44	7.78	7.81	7.84	7.89	8.17	
	1^1B_{2g}	R	6.95	7.43	7.87	8.11	8.32	8.74	8.99	
	2^1A_g	R	7.39	7.79	8.16	8.37	8.56	8.93	9.24	
ethylene	2^1B_{3u}	R	7.77	8.27	8.68	8.90	9.09	9.43	9.67	
-	3^1B_{3u}	R	7.96	8.40	8.85	9.10	9.34	9.81	10.21	
	4^1B_{3u}	R	8.26	8.75	9.23	9.50	9.75	10.24	10.80	
	3^1B_{1g}	R	8.55	9.02	9.45	9.68	9.89	10.30	10.72	
	2^1B_{1u}	R	8.64	9.00	9.36	9.58	9.78	10.19	10.71	
	5^1B_{3u}	R	9.28	9.74	10.15	10.38	10.59	10.99	11.45	
icobutoro	${}^{1}B_{1}$	R	5.36	5.73	6.08	6.25	6.40	6.71	6.85	
isobutene	$^{1}A_{1}$	R	6.07	6.47	6.82	6.98	7.12	7.37	7.53	
	1^1B_u	V	5.74	5.87	5.96	6.02	6.06	6.13	6.12	

	1^1B_g	R	5.52	5.90	6.23	6.42	6.59	6.91	7.01
	2^1A_u	R	5.83	6.24	6.61	6.77	6.96	7.30	7.44
trans-	2^1B_u	R	6.67	6.95	7.23	7.41	7.57	7.88	8.13
butadiene	2^1B_g	R	6.51	6.97	7.38	7.61	7.72	7.76	8.02
	3^1A_g	R	6.85	7.23	7.57	7.78	7.96	8.30	8.49
	3^1B_u	R	7.50	7.93	8.33	8.56	8.77	9.17	9.57
	${}^{1}B_{1}$	V	4.34	4.43	4.52	4.57	4.61	4.69	4.96
avaiding	${}^{1}B_{2}$	V	5.46	5.49	5.51	5.55	5.56	5.59	5.58
pyriaine	$^{1}A_{2}$	V	4.40	4.52	4.63	4.70	4.75	4.86	5.15
	${}^{1}A_{1}$	V	6.72	6.73	6.69	6.73	6.74	6.76	6.73
	${}^{1}\mathbf{B}_{3u}$	V	3.55	3.61	3.68	3.69	3.71	3.76	4.01
	${}^{1}B_{2u}$	V	5.43	5.45	5.46	5.47	5.48	5.48	5.45
pyrazine	${}^{1}B_{2g}$	V	5.09	5.18	5.31	5.31	5.35	5.43	5.64
1.	${}^{1}B_{1g}$	V	5.53	5.66	5.81	5.86	5.93	6.05	6.32
	${}^{1}B_{1u}$	V	6.96	6.98	6.95	6.98	7.00	7.02	7.00
	${}^{1}B_{1}$	V	3.09	3.19	3.26	3.33	3.38	3.47	3.76
	${}^{1}A_{1}$	V	5.56	5.60	5.63	5.65	5.67	5.70	5.69
pyridazine	${}^{1}A_{2}$	V	4.97	5.05	5.16	5.16	5.20	5.26	5.50
	${}^{1}B_{1}$	V	5.37	5.48	5.59	5.63	5.69	5.78	6.05
	${}^{1}B_{2}$	V	6.77	6.75	6.83	6.73	6.78	6.80	6.73
	${}^{1}B_{1}$	V	3.71	3.80	3.89	3.94	3.98	4.07	4.35
	${}^{1}A_{2}$	V	3.93	4.05	4.15	4.22	4.28	4.38	4.69
armine din e	${}^{1}B_{2}$	V	5.69	5.74	5.77	5.80	5.81	5.85	5.86
pyrimaine	$^{1}A_{2}$	V	5.05	5.14	5.22	5.26	5.30	5.38	5.63
	${}^{1}B_{1}$	V	5.28	5.39	5.49	5.55	5.60	5.70	5.98
	${}^{1}A_{1}$	V	6.96	6.95	6.94	6.99	7.01	7.03	7.01
	${}^{1}\mathbf{B}_{3u}$	V	1.77	1.84	1.90	1.93	1.96	2.02	2.29
a tatrazina	$^{1}A_{u}$	V	2.77	2.89	2.95	3.06	3.11	3.21	3.55
s-tetrazine	$^{1}A_{u}$	V	4.58	4.61	4.70	4.66	4.67	4.70	4.90
	${}^{1}\mathbf{B}_{3u}$	V	5.60	5.69	5.79	5.82	5.87	5.95	6.22
Mean absolute error (total)		0.83	0.50	0.25	0.26	0.37	0.60	0.85	
Mean absolute error (valence)		0.42	0.36	0.33	0.33	0.33	0.33	0.36	
Mean absolute error (Rydberg)		1.14	0.61	0.19	0.21	0.40	0.80	1.23	

6. Caricato set – TDDFT results from PBE0KLI-0.4 and PBE0HF-0.4

Table S6. The excitation energies of the Caricato set calculated using PBE0KLI-0.4. The third column indicates excitation types: V and R for vertical and Rydberg excitations, respectively. Experimental values were obtained from [M. Caricato, G. W. Trucks, M. J. Frisch, K. B. Wiberg, *J. Chem. Theory Comput.* **2010**, *6* (2), 370–383]. Unit: eV

			PBE0KLI-	PBE0KLI-	the portion of the	
			0.4	0.4	major	
Molecule	State	Type	(Orbital	w/ LDA	configuration in	Expt.
			energy	kernel	TDDFT calculation	
			gaps)	(TDDFT)	$(c ^2)$	
	$1^{1}A_{2}$	V	3.76	4.07	1.00	4.00
	$1^{1}B_{2}$	R	6.95	6.95	1.00	7.08
	$2^{1}B_{2}$	R	7.76	7.79	0.99	7.97
	2^1A_1	R	7.90	7.90	0.99	8.14
	2^1A_2	R	8.12	8.08	1.00	8.37
formaldehyde	$3^{1}B_{2}$	R	8.74	8.80	0.97	8.88
	$1^{1}B_{1}$	V	8.47	8.96	0.94	9.00
	3^1A_2	R	9.14	9.11	1.00	9.22
	4^1B_2	R	9.04	9.01	1.00	9.26
	4^1A_1	R	9.64	9.68	0.96	9.58
	$5^{1}B_{2}$	R	9.20	9.20	0.98	9.63
	$1^{1}A''$	V	4.14	4.44	1.00	4.28
	2^1 A'	R	6.42	6.50	0.99	6.82
acetaldehyde	$3^1A'$	R	7.12	7.15	0.99	7.46
acetaidenyde	$4^{1}A'$	R	7.55	7.55	0.98	7.75
	6^1 A'	R	8.19	8.18	0.98	8.43
	7^1 A'	R	8.47	8.44	0.99	8.69
	$1^{1}A_{2}$	V	4.32	4.61	1.00	4.43
	$1^{1}B_{2}$	R	5.97	5.99	1.00	6.36
	$2^{1}A_{2}$	R	7.14	7.14	1.00	7.36
acetone	$2^{1}A_{1}$	R	6.96	7.02	0.98	7.41
acetone	$2^{1}B_{2}$	R	7.31	7.31	1.00	7.49
	3^1A_1	R	7.85	7.85	1.00	7.80
	3^1B_2	R	7.45	7.48	0.99	8.09
	$1^{1}B_{1}$	R	7.96	7.95	0.99	8.17
	$1^{1}B_{3u}$	R	7.21	7.20	1.00	7.11
	$1^{1}B_{1u}$	V	5.79	8.18	0.69	7.65
	$1^{1}B_{1g}$	R	7.89	7.78	0.74	7.80
	1^1B_{2g}	R	7.86	7.87	1.00	7.90
	2^1A_g	R	8.10	8.16	0.99	8.28
ethylene	2^1B_{3u}	R	8.68	8.68	0.99	8.62
	3^1B_{3u}	R	8.86	8.85	0.99	8.90
	4^1B_{3u}	R	9.23	9.23	1.00	9.08
	3^1B_{1g}	R	9.44	9.45	1.00	9.20
-	$2^{1}B_{1u}$	R	9.06	9.36	0.69	9.33
	5^1B_{3u}	R	10.12	10.15	0.92	9.51

isobutene	${}^{1}B_{1}$	R	6.08	6.08	1.00	6.17
isobutene	${}^{1}A_{1}$	R	5.43	6.82	0.52	6.70
	1^1B_u	V	4.02	5.96	0.82	5.91
	1^1B_g	R	6.26	6.23	1.00	6.22
4.00.00	2^1A_u	R	6.60	6.61	0.99	6.66
trans-	2^1B_u	R	7.04	7.23	0.87	7.07
butadiene	$2^{1}B_{g}$	R	7.40	7.38	0.99	7.36
	3^1A_g	R	7.58	7.57	0.96	7.62
	3^1B_u	R	8.36	8.33	0.99	8.00
	${}^{1}B_{1}$	V	4.18	4.52	0.99	4.59
arraidia a	${}^{1}B_{2}$	V	4.83	5.51	0.67	4.99
pyridine	$^{1}A_{2}$	V	4.58	4.63	1.00	5.43
	${}^{1}A_{1}$	V	5.23	6.69	0.55	6.38
	${}^{1}\mathbf{B}_{3u}$	V	3.32	3.68	1.00	3.83
	${}^{1}\mathbf{B}_{2u}$	V	4.43	5.46	0.80	4.81
pyrazine	$^{1}B_{2g}$	V	4.89	5.31	0.98	5.46
	${}^{1}B_{1g}$	V	5.74	5.81	1.00	6.10
	${}^{1}B_{1u}$	V	5.82	6.95	0.61	6.51
	${}^{1}B_{1}$	V	2.87	3.26	0.99	3.60
	${}^{1}A_{1}$	V	4.90	5.63	0.64	5.00
pyridazine	$^{1}A_{2}$	V	4.88	5.16	0.99	5.30
	${}^{1}B_{1}$	V	5.49	5.59	0.99	6.00
	${}^{1}B_{2}$	V	5.52	6.83	0.37	6.50
	${}^{1}B_{1}$	V	3.67	3.89	0.99	3.85
	$^{1}A_{2}$	V	4.06	4.15	0.98	4.62
	${}^{1}B_{2}$	V	5.03	5.77	0.66	5.12
pyrimaine	$^{1}A_{2}$	V	4.91	5.22	0.97	5.52
	${}^{1}B_{1}$	V	5.30	5.49	0.99	5.90
	${}^{1}A_{1}$	V	5.42	6.94	0.54	6.70
	${}^{1}\mathbf{B}_{3u}$	V	1.55	1.90	1.00	2.25
,, ·	$^{1}A_{u}$	V	2.83	2.95	0.99	3.40
s-tetrazine	$^{1}A_{u}$	V	4.38	4.70	0.99	5.00
	${}^{1}B_{3u}$	V	5.65	5.79	0.99	6.34
Mean absolute	error (to	tal)	0.399	0.253	A C 12	
Mean absolute	Mean absolute error (valence)		0.617	0.334	Average of $ c ^2$:	
Mean absolute	error (Ry	dberg)	0.231	0.191	0.92	

Table S7. The excitation energies of the Caricato set calculated using PBE0HF-0.4. The third column indicates excitation types: V and R for vertical and Rydberg excitations, respectively. Experimental values were obtained from [M. Caricato, G. W. Trucks, M. J. Frisch, K. B. Wiberg, *J. Chem. Theory Comput.* **2010**, *6* (2), 370–383]. Unit: eV

			PBE0HF-		the portion of the	
Molecule	State	Туре	0.4	PBE0HF-	major	
			(Orbital	0.4	configuration in	Expt.
			energy	(TDDFT)	TDDFT calculation	•
			gaps)		$(c ^2)$	
	$1^{1}A_{2}$	V	8.08	3.98	0.96	4.00
	$1^{1}B_{2}$	R	8.83	7.25	0.61	7.08
	2^1B_2	R	9.07	7.99	0.34	7.97
	2^1A_1	R	9.02	8.04	0.39	8.14
	2^1A_2	R	9.10	8.22	0.53	8.37
formaldehyde	$3^{1}B_{2}$	R	9.12	8.45	0.38	8.88
	$1^{1}B_{1}$	V	13.25	9.17	0.96	9.00
	3^1A_2	R	9.65	8.72	0.46	9.22
	4^1B_2	R	9.50	8.64	0.67	9.26
	4^1A_1	R	9.57	8.75	0.62	9.58
	$5^{1}B_{2}$	R	9.61	8.78	0.41	9.63
	$1^{1}A''$	V	8.37	4.33	0.97	4.28
	$2^{1}A'$	R	8.45	7.04	0.63	6.82
1 . 1 . 1	3 ¹ A'	R	8.65	7.58	0.23	7.46
acetaidenyde	$4^{1}A'$	R	8.70	7.79	0.20	7.75
	6 ¹ A'	R	8.87	8.23	0.41	8.43
	7 ¹ A'	R	8.87	8.26	0.29	8.69
	$1^{1}A_{2}$	V	8.31	4.50	0.49	4.43
	$1^{1}B_{2}$	R	8.11	6.68	0.73	6.36
	2^1A_2	R	8.42	7.50	0.35	7.36
	$2^{1}A_{1}$	R	8.36	7.48	0.44	7.41
acetone	$2^{1}B_{2}$	R	8.40	7.55	0.34	7.49
	$3^{1}A_{1}$	R	8.50	7.96	0.54	7.80
	$3^{1}B_{2}$	R	8.41	7.79	0.25	8.09
	$1^{1}B_{1}$	R	8.49	7.98	0.67	8.17
	1^1B_{3u}	R	8.53	7.04	0.49	7.11
	$1^{1}B_{1u}$	V	8.87	7.53	0.70	7.65
	$1^{1}B_{1g}$	R	8.65	7.59	0.44	7.80
	1^1B_{2g}	R	8.65	7.63	0.47	7.90
ethylene	$2^{1}A_{g}$	R	8.76	7.87	0.67	8.28
	2^1B_{3u}	R	8.76	8.10	0.50	8.62
	3^1B_{3u}	R	8.89	8.26	0.78	8.90
	4^1B_{3u}	R	9.25	8.40	0.46	9.08
	3^1B_{1g}	R	8.92	8.30	0.66	9.20
	2^1B_{1u}	R	9.00	8.32	0.69	9.33
	5^1B_{3u}	R	9.80	8.71	0.72	9.51
isobutono	${}^{1}B_{1}$	R	7.62	6.22	0.63	6.17
Isobutelle	$^{1}A_{1}$	R	7.80	6.68	0.29	6.70

trans- butadiene	1^1B_u	V	6.93	5.77	0.98	5.91
	1^1B_g	R	7.37	6.10	0.54	6.22
	$2^{1}A_{u}$	R	7.48	6.37	0.42	6.66
	2^1B_u	R	7.60	6.82	0.71	7.07
	2^1B_g	R	7.57	6.97	0.33	7.36
	3^1A_g	R	7.74	7.12	0.75	7.62
	3^1B_u	R	7.88	7.28	0.44	8.00
	${}^{1}B_{1}$	V	8.05	5.11	0.97	4.59
nymidina	${}^{1}B_{2}$	V	7.80	5.64	0.77	4.99
pyriaine	$^{1}A_{2}$	V	8.44	5.67	0.99	5.43
	${}^{1}A_{1}$	V	8.20	6.38	0.64	6.38
	${}^{1}\mathbf{B}_{3u}$	V	7.22	4.21	0.99	3.83
	${}^{1}B_{2u}$	V	7.46	5.46	0.90	4.81
pyrazine	${}^{1}\mathbf{B}_{2g}$	V	9.10	5.92	0.95	5.46
	${}^{1}B_{1g}$	V	9.93	7.23	0.96	6.10
	${}^{1}B_{1u}$	V	9.09	6.57	0.77	6.51
	${}^{1}B_{1}$	V	6.90	3.89	0.98	3.60
	${}^{1}A_{1}$	V	8.00	5.78	0.74	5.00
pyridazine	$^{1}A_{2}$	V	8.90	5.86	0.97	5.30
	${}^{1}B_{1}$	V	9.53	6.66	0.97	6.00
	${}^{1}B_{2}$	V	8.63	6.51	0.54	6.50
	${}^{1}B_{1}$	V	7.60	4.63	0.99	3.85
	$^{1}A_{2}$	V	7.99	5.08	0.98	4.62
nyminaidina	${}^{1}B_{2}$	V	8.13	5.91	0.76	5.12
pyrimaine	${}^{1}A_{2}$	V	9.01	6.12	0.97	5.52
	${}^{1}B_{1}$	V	9.39	6.53	0.98	5.90
	${}^{1}A_{1}$	V	8.51	6.68	0.73	6.70
s-tetrazine	${}^{1}\mathbf{B}_{3u}$	V	5.68	2.51	1.00	2.25
	$^{1}A_{u}$	V	6.99	4.03	0.99	3.40
	$^{1}A_{u}$	V	8.53	5.45	0.99	5.00
	${}^{1}\mathbf{B}_{3u}$	V	9.84	6.90	0.99	6.34
Mean absolute error (total)			1.743	0.376	Average of $ z ^2$.	
Mean absolute error (valence)		3.142	0.405	Average of $ c $:		
Mean absolute error (Rydberg)			0.667	0.353	0.07	

7. Caricato set – Orbital energy gaps and TDDFT results from BH&H (KLI)

Table S8. The excitation energies of the Caricato set calculated using BH&H (KLI). The third column indicates excitation types: V and R for vertical and Rydberg excitations, respectively. Experimental values were obtained from [M. Caricato, G. W. Trucks, M. J. Frisch, K. B. Wiberg, *J. Chem. Theory Comput.* **2010**, *6* (2), 370–383]. Unit: eV

Molecule	State	Туре		BH&H (KLI)		
			BH&H (KLI)	w/ LDA kernel	Expt.	
			(Orbital energy gaps)	(TDDFT)	•	
formaldehyde	$1^{1}A_{2}$	V	3.73	4.05	4.00	
	$1^{1}B_{2}$	R	6.89	6.90	7.08	
	2^1B_2	R	7.66	7.71	7.97	
	2^1A_1	R	7.91	7.92	8.14	
	2^1A_2	R	8.13	8.09	8.37	
	3^1B_2	R	8.74	8.82	8.88	
	$1^{1}B_{1}$	V	8.49	9.00	9.00	
	3^1A_2	R	9.22	9.19	9.22	
	4^1B_2	R	9.09	9.06	9.26	
	4^1A_1	R	9.71	9.75	9.58	
	$5^{1}B_{2}$	R	9.29	9.28	9.63	
	$1^{1}A''$	V	4.18	4.47	4.28	
	2^1 A'	R	6.34	6.43	6.82	
aastaldahyda	3^1 A'	R	7.10	7.14	7.46	
acetaidenyde	4^1 A'	R	7.51	7.53	7.75	
	6 ¹ A'	R	8.20	8.19	8.43	
	7^1 A'	R	8.53	8.51	8.69	
	$1^{1}A_{2}$	V	4.39	4.67	4.43	
	$1^{1}B_{2}$	R	5.85	5.88	6.36	
	2^1A_2	R	7.15	7.15	7.36	
acatona	2^1A_1	R	6.96	7.04	7.41	
acetone	$2^{1}B_{2}$	R	7.30	7.31	7.49	
	3^1A_1	R	7.89	7.90	7.80	
	$3^{1}B_{2}$	R	7.45	7.48	8.09	
	$1^{1}B_{1}$	R	8.03	8.02	8.17	
	$1^{1}B_{3u}$	R	7.08	7.08	7.11	
	$1^{1}B_{1u}$	V	5.75	8.05	7.65	
	1^1B_{1g}	R	7.84	7.66	7.80	
	1^1B_{2g}	R	7.80	7.81	7.90	
ethylene	2^1A_g	R	8.04	8.12	8.28	
	$2^{1}B_{3u}$	R	8.60	8.60	8.62	
	3^1B_{3u}	R	8.84	8.83	8.90	
	4^1B_{3u}	R	9.22	9.23	9.08	
	3^1B_{1g}	R	9.42	9.43	9.20	
	2^1B_{1u}	R	9.07	9.33	9.33	
	5^1B_{3u}	R	10.04	10.07	9.51	
isobutene	${}^{1}B_{1}$	R	5.88	5.89	6.17	
	${}^{1}A_{1}$	R	5.39	6.71	6.70	

trans- butadiene	1^1B_u	V	4.01	5.87	5.91
	1^1B_g	R	6.12	6.09	6.22
	$2^{1}A_{u}$	R	6.49	6.50	6.66
	2^1B_u	R	6.95	7.17	7.07
	2^1B_g	R	7.32	7.31	7.36
	3^1A_g	R	7.50	7.51	7.62
	3^1B_u	R	8.30	8.27	8.00
	${}^{1}B_{1}$	V	4.19	4.53	4.59
nymidina	${}^{1}B_{2}$	V	4.81	5.49	4.99
pyridine	$^{1}A_{2}$	V	4.60	4.65	5.43
	${}^{1}A_{1}$	V	5.22	6.63	6.38
	${}^{1}\mathbf{B}_{3u}$	V	3.31	3.66	3.83
	${}^{1}B_{2u}$	V	4.41	5.43	4.81
pyrazine	$^{1}B_{2g}$	V	4.91	5.33	5.46
	${}^{1}B_{1g}$	V	5.78	5.85	6.10
	${}^{1}B_{1u}$	V	5.83	6.89	6.51
	${}^{1}B_{1}$	V	2.91	3.29	3.60
	${}^{1}A_{1}$	V	4.90	5.63	5.00
pyridazine	$^{1}A_{2}$	V	4.90	5.18	5.30
	${}^{1}B_{1}$	V	5.51	5.62	6.00
	${}^{1}B_{2}$	V	5.51	6.79	6.50
	${}^{1}B_{1}$	V	3.71	3.93	3.85
	${}^{1}A_{2}$	V	4.10	4.19	4.62
nurimidina	${}^{1}B_{2}$	V	5.02	5.77	5.12
pyrimidine	${}^{1}A_{2}$	V	4.92	5.22	5.52
	${}^{1}B_{1}$	V	5.31	5.50	5.90
	${}^{1}A_{1}$	V	5.41	6.89	6.70
s-tetrazine	${}^{1}\mathbf{B}_{3u}$	V	1.59	1.93	2.25
	$^{1}A_{u}$	V	2.86	2.98	3.40
	$^{1}A_{u}$	V	4.37	4.68	5.00
	${}^{1}\mathbf{B}_{3u}$	V	5.64	5.78	6.34
Mean absolute error (total)			0.402	0.250	
Mean absolute error (valence)			0.607	0.316	
Mean absolute error (Rydberg)		0.244	0.199		