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S1 Inconsistent Waller-Hartree Approximation

In the following, the effect of an inconsistent application of the Waller-
Hartree approximation ws =~ wq is discussed. As in the paper, the two
scattering matrix elements in equation (2) become independent of ws. But
instead of restricting the lower and upper limits of the remaining integral
over wyg to values in the vicinity of wg, the integral is assumed to run from
zero to infinity, meaning that all scattered photons are detected regardless of
their energies. Since the power spectral density F' (ws +w fij) is normalized,
the integral yields unity for every value of wy;;. Hence, equation (2) becomes:

ds . dO’t toeo I - * —lwi it E I:* S
Q- de ) <t>Z; ¢ ¢j e ri Lyj dt. (51)
i

In equation (S1), the scattering matrix elements summed over f are:

[e.e]

oLy ly=) <¢j‘j’g‘¢f><¢f‘j’0‘¢i>' (S2)
7 !

The zero in the subscript of jLO labels the scattering operator to be inde-
pendent of wg. By use of the resolution of the identity, I = Z?o }1/) f><1/z f
equation (S2) simplifies to:

)

Ne Ne

Yo Lyly= <¢j{i’$i’0‘¢i> =33 (gpyleamrile). (S3)
f m n

The two sums on the right-hand side of equation (S3) run over all N, elec-
trons. If both sums refer to the same electron, i.e. m = n, the exponential
becomes unity. Thus, equation (S3) can be written as:

Ne Ne

D Ly Ly = Ne (ylabi) +> > (apyletamm=m) |,
f m n#m
N. N (S4)

= Nedy+ 30D (),

m n#m

The Kronecker delta d;; in the second line of (S4) is a consequence of the
orthonormality of the eigenstates ‘7,[12> and ‘¢j> Equation (S1) can now be
separated into a part that refers to single electrons, dS;/dS2, and a part that
involves pairs of different electrons, dSs/d<:
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dS  dS;  dS,
0~ a0 (85)
With equation (S4), the two terms in (S5) are:
dSl dUt Foo % —wgit dO’t
dSQ . dUt +0o0 x  —wgit
dQ_dQ/_OO I(t);czc‘ye J
N. N (S7)
35S e di
m n#m

Equation (S6) contains the total integrated intensity of the X-ray probe
pulse, I = fjoooo I(t) dt, and reveals that the scattering signal from single
electrons is independent of both the time ¢ and the g-vector. It corresponds
to the elastic scattering of N, free electrons in a pulse with intensity I.
Hence, the information contained in scattering by single bound electrons
is lost. This is a direct consequence of the assumption that all scattered
photons are detected without any energy resolution, which violates, strictly
speaking, the condition under which the approximation ws & wyq is justified.
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S2 Derivation of Equations (17) and (18)

Here, equations (17) and (18) are derived. To begin with, the integrals of the
scattering matrix element defined in equation (3) are written out explicitly:

Lﬁ:/oo Z eI ap(ry.orN) (e ry) dry . dry. (S8)

—00

The sum and integrals in equation (S8) refer to all N, electrons of the
material system. Now, the exponential e*?™™ is expressed as an integral over
a general electronic coordinate r by use of the sifting property of the Dirac
delta function:

el = / e 5(r —1y,) dr (S9)

—0o0

An insertion of equation (S9) into equation (S8) yields after interchange of
the order of the integrals:

Ne

Ly = /_Z Y (o — ) |9p;) dr. (810)

n=1

The Dirac delta function d(r — r,,) in the matrix element on the right-hand
side of equation (S10) sifts out the coordinates of one of the electrons:

<¢f}‘§(7“ - T”)‘¢i> = /_OO Yi(ry...rN) - Pi(r1...rN)

X dm .. .drN,l.

(S11)

Note that electrons are indistinguishable and hence the labeling of their
coordinates r, is arbitrary. The expression in equation (S10) involves the
expectation value of the one-electron density operator p;(r) given in equa-
tion (15) in its Fourier transform F;. [pf;(r)](q) from 7- into g-space defined
in equation (16). Hence, equation (S10) can be written as:

Ly = Frlpri(r)](a). (S12)

By insertion of equation (S12) into the scattering matrix elements in equa-
tions (7) and (10), equations (17) and (18) are obtained.
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S3 Expansion of Atomic Orbitals

Tab. S1: Atomic orbitals with principal quantum numbers n € {1,2, 3,4} expressed
as linear combinations of complex parabolic eigenstates 1,, ,,, ., (§,7,¢). The latter
are written as |n, ni, n2>, where n; and ny are parabolic quantum numbers that
obey the relation n = ny + ngo +m + 1. m is the magnetic quantum number.

orbitals linear combination of parabolic eigenstates

|1s) |1,0,0)

|2s) %-[1210 +\201>]

12p.) %-[[2 0,0)" +12,0,0)]

2py) 7 [/2:0,0)" —[2,0,0)]

2p-) 7 [21,0) - [2,0,1)]

|3s) %-[|320>+|311)+|302>]

13p.) %-[|310> +|310>+|301>*+|301>]

13py) ﬁ-HSlO -13,1,0) +3,0,1)" —|3,0,1)]

|3p-) 75 - 1/3:2,0) — [3,0,2)]

|3d,2_,2) 7 - (13,0, 0> + 3,0, 0)]

3d.y ) o [|3,0,0)" —|3,0,0)]

3d..-) 77 013,1,0)" +3,1,0) - [3,0,1)" — |3,0,1)]

|3d,-) % 013,1,0)" = 3,1,0) - [3,0,1)" + 3,0, 1)]

|3d2) 75 113:2,0) —2-3,1,1) +[3,0,2)]

|4s) ﬁ-[|430>+\403>+|421>+|412>]

|4p.) I [ (|4,2,0)" +[4,2,0) + [4,0,2)" + |4,0,2))
+ |4,1,1>* +4,1,1)]

[4p,) %14 (14,2,0) — [4,2,0)+[4,0,2)" ~ [4,0,2))
+]4,1,1)" — [4,1,1)]

4p-) 55 [3-(14,3,0) — [4,0,3)) +4,2,1) — [4,1,2)]

|4d,2_,2) 75 4.1, 0>* +4,1,0) + [4,0,1)" + |4,0,1)]

|4d.y ) ﬁ.[yz; 1,0)" —[4,1,0) +[4,0,1)" — |4,0,1)]

|4d...) ﬁ (|4, 2, 0> +4,2,0) — [4,0,2)" — |4,0,2)]

|ad,.) 7 [|4,2,0)" — |4,2,0) — |4,0,2)" + |4,0,2)]

|4d.2) ﬁ -[|4,8,0) + |4,0,3) — [4,2,1) — |4,1,2)]

|[4fo02-5,2)) 5[40, 0 )" +14,0,0)]

|4f,(3022) 75 [|4,0,0)" —[4,0,0)]

4602 ) - [4,1,0)+[4,1,0) - [4,0,1)" [4,0,1)]

|4f0y- ) 27 [14,1,0)" —[4,1,0) — [4,0,1)" + |4,0,1)]

|4f,.2) 7142, 0> +4,2,0) + [4,0,2)" + |4,0,2)
—V3-(]4,1,1)" +4,1,1))]

|4f, .2 ) +5-114,2,0)" —[4,2,0) + [4,0,2)" - [4,0,2)
-V3-(]4,1,1)" |411)

|4f 5 ) 55 1[4:3,0) —[4,0,3) =3 (|4,2,1) - |4,1,2))]
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S4 Rotation of Atomic Orbitals

Here, the rotation of an atomic ‘ndzz> orbital is demonstrated in detail.
First, the rotation matrix If{y(ﬁ) acts upon the orbital and thereby trans-
forms the z-coordinate as z — sin(f) - z + cos(0) - z:

) |nd.2) = [sin(6) - |n(~ix> + cos(0) - ‘n(~12>]2
= [sin®(0) - ‘nam2> + sin(26) - }n(~1m> (S13)
+ cos?(6) - ‘n&zzﬂ.

The vector ‘n&x2> can be expressed as a proper linear combination of the
common set of atomic ‘d> orbitals, as shown in table S2. The tilde on top

of d denotes that the vector has to be multiplied with an additional factor
so that ‘nd22> remains normalized under rotation. The same holds for all

other states following this notation. Now, the operator f{z(d)) acts upon the
vectors in the second and third line of equation (S13):

A~

R.(¢) ]n&x2> = [cos?(¢ |ndx2> + sin(2¢) - ‘ndmy> (S14)
+ sin?(¢) - }ndy2>],
R.(¢) ‘nam> = [cos(¢) - ‘n(~1m> + sin(¢) - ‘nayzﬂ, (S15)
Rz(¢) ”nazz> = ]n&z2>. (816)
The function ‘ndzz R(0 > that represents the rotation of the ‘ndzz> or-

bital is obtainable by combmatlon of equation (S13) with equations (S14)
o (S16):

Ind.2.g(0,¢)) = sin®(0) - [cos®(¢) - |nd,2) + sin(2¢) - [nd,,)
+sin?(¢) - |nd,z2)]
+ sin(26) - [cos(¢) - ‘nam> + sin(¢) - !nayz>]
+ cos?() - ‘n(~122>

(S17)

Finally, the vectors on the right-hand side of equation (S17) can be substi-
tuted by their corresponding linear combinations of atomic orbitals given in
table S2. After a rearrangement of terms, the equation for ‘ndzz;R(G, <]§)>
in table S3 is obtained. All other rotations of atomic orbitals provided in
tables S3 to S4.2 have been derived in the same way.
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Tab. S2: Vectors |ni7,> with ™ = Hi a; and «; € {x,y, 2} expressed as linear com-
binations of real-valued atomic orbitals for arbitrary principal quantum numbers n
and azimuthal quantum numbers of [ = 2 (d) and [ = 3 (f). The factors have been
chosen in order to conserve the normalization of !ndzz> and ‘nf23> under rotation.
If other atomic orbitals are rotated, these factors have to be modified accordingly.

component linear combination of atomic orbitals

nda) B fnda )b Ind.)
’nay2> 7? ’ |nd1'27y2> - % ’ !ndz2>
nds)  Inda)

’n&zy> ? - |[nday)

nd)  f|nd..)

nd,-) ? - |nd,yz)

nf.) Vi ke sn) = /3 Infea2)

Inf,s) /3 ) — /3 )

’nf'zs> ‘nfz3>

nf,z,) VI aay) — ok [nf,.2)
nf,2.) Ve e) = & nfa)
I, ,2) /3 Infaan) = oy [nfoa)
Inf,.2) V3 nf.2)

[nf,2.) /3 It y) — 4 )
Inf,.2) Ny

nf-) Vs - nte:)
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Tab. S3: Rotation of atomic ’d> orbitals with arbitrary principal quantum num-
ber n by polar and azimuthal angles of # and ¢, respectively. The rotations are
expressed as angle-dependent linear combinations of atomic orbitals that share the
same principal and azimuthal quantum numbers n and [ = 2. The coefficients have
been derived by operation of the rotation matrices Ry (9) and R. (¢) upon |d>

orbitals angle-dependent coefficients
//é |nd,2_,2) 3- [cos 0)+1] - cos(2¢)
< |nd.y) [cos?(6) + 1] - sin(¢) cos(¢)
fii |nd..) —sin(6 ) os(6) cos( )
_;;L ’ndyz> —sin(0) cos(0) sin(¢)
£ |nd.2) ? sin?(6)
Py |nd,2_,2) —2 cos() sin(¢) cos(¢)
§ |nd.y) cos(0) cos(2¢)
E |nd..) sin(0) sin(¢)
g |nd,.) —sin(#) cos(¢)
T |'n,dzz> 0
P |nd,2_,2) cos(d) sin(6) cos(2¢)
E’; |nd.y) 2 cos(0) sin(0) sin(¢) cos(¢)
\i |ndm> cos(20) cos(¢)
'§ |nd,-) cos(26) sin(¢)
— |nd.2) 3 sin(f) cos(h)
Py ’ndxz,y2> —2 sin(0) sin(¢) cos(¢)
§ ’ndzy> sin(0) cos(2¢)
= |nd..) —cos(6) sin(¢)
'gg |nd,-) cos(0) cos(¢)
T |ndzz> 0
Y ’ndzz,y2> ¥ 31112(9) cos(2¢)
§ ’ndzy> \/g sin’(0) sin(¢) cos(¢)
= ’ndzz> V3 sin(0) cos(6) cos(¢)
12“ ’ndyz> V3 sin(0) cos(6) sin(¢)
_ |nd.2) 1 [3 cos(26) + 1]
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Tab. S4.1: Rotation of atomic |f > orbitals with arbitrary principal quantum num-
ber n by polar and azimuthal angles of # and ¢, respectively. The rotations are
expressed as angle-dependent linear combinations of atomic orbitals that share the
same principal and azimuthal quantum numbers n and [ = 3. The coefficients have
been derived by operation of the rotation matrices Ry (6) and R (¢) upon |f ).

orbitals angle-dependent coefficients
|nf,(n2_3,2)) 15 - [15 cos(6) + cos(36)] - cos(3¢)
/’i\s |, (302_y2)) 15 - [15 cos(8) + cos(30)] - sin(3¢)
S‘Zé }n (2 —y?)) —\/g sin(9) - [cos®(0) + 1] - cos(2¢)
:'? |nfey:) —\/g sin(9) - [cos®(0) + 1] - sin(¢) cos(¢)
% |nfmz> V15 sin®(6) cos(f) cos(¢)
EH }nfyz2> @ sin(6) cos(6) sin(¢)
|nf.s) —\/g sin®()
. |nf (2-3y2)) —%-[3 cos 2(0) + 1] - sin(3¢)
%S |nf (322-y2)) 1|3 cos 2(0) + 1] - cos(3¢)
% |nf (22 ,y2)> V6 si n(0) COS(@) sin(¢) cos(¢)
‘% }nfxyz> \/7 ) cos(0) cos(2¢)
3 nf,.2) —YI2 sin?(0) sin(¢)
E |nf,.2) % sin(6) cos(¢)
|nf.s) 0
N |, (a2 3,2)) \/g sin(f) - [cos®(0) + 1] - cos(3¢)
/@t |nf, (302 y2)) \/g sin(0) - [cos*(0) + 1] - sin(3¢)
% |nf.o2_y2y)  —% - [cos(6) — 3 cos®(0)] - cos(2¢)
g,‘; |nfey:) —[cos(#) — 3 cos®(6)] - sin(¢) cos(¢)
N% |nfzzz> 7%\/%, [3 sin(30) — sin(6)] - cos(¢)
E |nfyz2> f%\/%- [3 sin(30) — sin(6)] - sin(¢)
nf.s) VI5 cos(6) sin?(6)
a2 any) =2 sin0) cos(0) sin(30)
~ |nf (322 —y2)) \/551 (6) cos(0) cos(3¢)
3 |nf, (,2_y2y)  —2 cos(20) sin(e) cos(e)
\Ef; |nfey.) cos(20) cos(2¢)
“5 }nfmz> \/g sin(@) cos(0) sin(¢)
o |nf,.2) —\/g sin(0) cos(0) cos(¢)
|nf.s) 0
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Tab. S4.2: Rotation of atomic |f > orbitals with arbitrary principal quantum num-
ber n by polar and azimuthal angles of # and ¢, respectively. The rotations are
expressed as angle-dependent linear combinations of atomic orbitals that share the
same principal and azimuthal quantum numbers n and [ = 3. The coefficients have
been derived by operation of the rotation matrices Ry (6) and R (¢) upon |f ).

orbitals angle-dependent coefficients
|nf,(p2_3,2)) VI5 §in2(9) cos(6) cos(3¢)
- [nfy(302_y2)) Y22 sin?(0) cos(6) sin(3¢)
§ |nf. (2 _y2y) %\/g [3 sin(30) — sin(6)] - cos(2¢
\;% |nfey-) i\/g [3 sin(30) — sin(6)] - sm(qS cos(9)
‘EH |nf,.2) =+ [15 cos(36) + cos(8)] - cos(¢)
o |nf,.2) 15+ [15 cos(36) + cos(6)] - sin(¢)
|nf,s) —14/2 - [5 sin(30) + sin(0)]
|nf, (12 _3,2)) @ sin?(0) sin(3¢)
~ [nfya2_y2)) Y42 sin(0) cos(3¢)
3 ‘nfz(x —y2)) 10 sin(0) cos() sin(¢) cos(¢p)
\5 |nfey.) \Fbm( ) cos(0) cos(2¢)
uEg |nf,.2) 1 [1 =5 cos®(8)] - sin(¢)
o |nf,.2) —2 - [1 =5 cos®(8)] - cos(e)
|nf.s) 0
o (@2 —ay2)) \/% sin®(0) cos(3¢)
P |, (302 y2)) 5 sin®(6) sin(3¢)
§ |, (2 y2y) g sin?(6) cos(6) cos(2¢)
\i |nfmyz> V15 sin®(0) cos(6) sin(¢) cos(¢)
“g |nf,.2) ﬁ - [sin®(8) + 4 sin(36)] - cos(¢)
|nf,.2) V - [sin®(0) + 4 sin(30)] - sin(¢)
|nf.s) 1 [cos®(0) + cos(30)]
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S5 Evaluation of the Scattering Patterns

Here, further details of the evaluation of the scattering patterns in the
parabolic eigenstate basis are shown. Since it is assumed that the inci-
dent X-ray probe pulse propagates along the y-axis, but the g-vector of the
L.-operator is aligned with the z-axis, it is convenient to interchange the y-
and z-coordinates in equation (S17). This change relates the angles § and
¢ of the rotation directly to the polar and azimuthal angles of the g-vector.
Hence, the expansions in table S5 are used instead of the expressions for
|nd.2gr (6, ¢)) and |nf,s.r(0,9)) given in tables S3 and S4.2.

Tab. S5: Rotation of the ’ndyz> and |nfy3> vectors with arbitrary principal quan-
tum number n by polar and azimuthal angles of 8 and ¢, respectively. The rotations
are expressed as angle-dependent linear combinations of atomic orbitals that share
the same principal and azimuthal quantum numbers n and I = 2 (d) or [ = 3 (f).
The coefficients have been derived by operation of the rotation matrices R, (#) and
R. (¢) upon the two original vectors.

orbital angle-dependent coefficients
P |nd,2_,2) V5 . [sin?(0) cos?(¢) — cos?(0)]
§ |nd.y) V3 sin(20) cos(¢)
E |nd..) @ sin?(0) sin(2¢)
’Sp’ |nd,-) g sin(20) sin(¢)
T |nd.2) 1.3 sin?(0) sin®(¢) — 1]
|nf, (12 _3,2)) \/g sin(6) cos(¢) - [sin®(6) cos®(¢) — 3 cos®(0)]
~ ‘n (302 —y2) ) \/g cos() - [3 sin®(0) cos®(¢) — cos*(0)]
§ |nf, (2 y2y) V15 in(6) sin(¢) - [sin®(0) cos?(4) — cos?(9)]
\5 |nfey-) @ sin®(#) cos(f) sin(2¢)
E |nf,.2) \/g sin(0) cos(e) - [5 sin®(0) sin®(¢) — 1]
|nf,.2) \/g cos(0) - [5 sin(0) sin?(¢) — 1]
|nf.s) 1 sin(6) sin(¢) - [5 sin®(6) sin®(¢) — 3]

Now, the basis vectors in table S5 can be expanded in the parabolic eigen-
state basis by application of table S1. After simplification, the two following
expressions are obtained:

|3d,2.r(0,0)) = \/g -Re[(sin(0) cos(¢) — ¢ cos(@))2 -13,0,0)]
+ /3 sin(8) sin(¢) -Re[(sin(6) cos(¢) — ¢ cos(0)) - [|3,1,0) — [3,0,1)]] (S18)

1 .2 .2
+ﬁ' [3 sin®(0) sin®(¢) — 1] - [[3,2,0) —2-]3,1,1) +[3,0,2)],
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|4f,5.(0,0)) = ? -Re[(sin(0) cos(¢) — ¢ cos(49))3 -|4,0,0)]
+ \/f sin(#) sin(¢)

x Re[(sin() cos(¢) — ¢ cos(@))2 . H4, 1,0) — ’4, 0,1)]]
+ %\/g [5 sin’(0) sin®(¢) — 1]
X Re[(sm( ) cos(¢) — ¢ cos(@)) . [|4, 2, 0> —-V3- ‘4, 1, 1> + ’4, 0, 2>H
1 . . .2 .2
W sin(6) sin(¢) - [5 sin”(#) sin®(¢) — 3]
x [|4,8,0) —3-[4,2,1) +3-[4,1,2) — [4,0,3)].

+

(S19)

Equations (S18) and (S19) can now be inserted into equations (45) to (47)
of the paper. After several simplifications, the following expressions for the
elements D3, Dy, and O34 in the parabolic eigenstate basis are obtained:

Dy =53 [(w;|Lo[3d.2)|* Wrs3(Aw)
f
= Z |(;|L-|3d,2.r (0, ¢) \ W3 (Aw)
(S20)

f
48 -[3 sin®(0) sin®(¢) — 1] [Ds,0— 2 Cs.0]

. [SinQ(G) sin’®(¢) — sin[6]" sin(qzﬁ)ﬂ - [D31 —2 Cs4]

ol W k| W

- [cos® (0) 4 sin® (0) cosz(qsﬂ 2. Ds,2,

(sl Lolafo) | Wiaa(Aw)

[ L |48 5,00, 0| Wraa(Aw)

*MS -1

= — sin?() sin®(¢) - [5 sin?(8) sin*(¢) — 3] - [Dao — 2 Cayo] (S21)
+—=-[1-5 sin®(6) sin® (¢)]2 1= sin(0) sin2(¢)} [P — 2 Can
+ 16 sin?(0) sin®(¢) - (1 — sin(0) sin®(¢))” - [Da2 — 2 Caz]

+ = [1- sin’(0) sin2(¢)]3 - Day,3,

Mats Simmermacher, Niels E. Henriksen, and Klaus B. Mgller, (2017)
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Ous = 150 (01 Baf3d) (3, [Lofato)” Wyaa(Aw)
f

— % . Z (,|L.|3d,2.r(0,0))
f

X (| L:|4f 0.0(0,0))" Wysa(Aw)

sin(0) sin(¢) (S22)

1
16v/30
x [15 sin®(0) sin®(¢) — 14 sin®(9) sin®(¢) + 3] - O340

+ 3 sin(0) sin(¢) - [6 sin?(6) sin®(¢)

8v5
-5 sin4(0) sin4(¢) — 1] - 0341
+ %\/g sin(6) sin(¢) - [sin2(0) sin’(¢) — 1]2 -O3,4,2.

The elements in calligraphic letters in equations (S20) to (S22) are defined in
tables S6 to S8. The matrix elements they contain can finally be evaluated
by means of equations (33) and (34) in the paper.

Tab. S6: Scattering matrix elements D,, ,,, in the parabolic eigenstate basis. The
indices n and m refer to the principal and magnetic quantum numbers. The el-
ements are diagonal in all their quantum numbers. The sums over f involve all
parabolic eigenstates with m. The parabolic eigenstates ,, ,,. ,,,(£,7, ) are writ-
ten as ‘n, Ny, n2>. The parabolic quantum numbers n; and ns obey the relation
n=mny+ns+m-+1.

Dso =% [ (9| L-|3,2,0)]* +4-|(y;|L.|3,1,1)|?
+[(3|L:[3,0,2) } Wys,3(Aw)

Doa = 7 | (] L:[3, 1, 0)[" + (8] £:[8,0,1) " | - Wy (Aw)

D3,2 = Z?o ‘<’ljlf .tzz|3, 0, O>|2 . Wf73,3(Aw)
Dio = S5 [ [(w]2:14,3,0) +9- (| L:[4,2,1)]
+ 9|9 L2 4,1, 2)[* + ([ L2]4,0,3)[* | - Wraa (Aw)

Du =357 [ (|- 2,007 + 3| (3L [,1, 1)
10 E:14,0,2) |- Wy ()

L.

Dao =37 [ (% 4,1,0>|2 + |<¢fytz|4,o,1>|2 } “Wryaa(Aw)

Dis =37 |(¥;|L:|4,0, 0)|* - Wyaa(Aw)

Mats Simmermacher, Niels E. Henriksen, and Klaus B. Mgller, (2017)
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Tab. S7: Scattering matrix elements C,, ,, in the parabolic eigenstate basis. The in-
dices n and m refer to the principal and magnetic quantum numbers. The elements
are off-diagonal in their parabolic quantum numbers, n; 1 # n;1 and n; 2 # nj 9,
but diagonal in n and m. The sums over f involve all parabolic eigenstates with
m. The parabolic eigenstates 1, ,,, ,,,(§;1,¢) are written as |n,n1,n2>. The
parabolic quantum numbers n; and ns obey the relation n = ny +ng +m + 1.

Cz0 = E;o [ 2. Re[<¢f|i}z’3, 1, 1> <¢f’iz‘3, 2, O>*]
- Re[ (4 13,0.2) (1 |E-[3.2,0)
2 Re[(0 [ £-[3,0,2) (1 |-[3,1,1)°] | W0 ()

Cs1 =37 Re[(¥;|L.|3,0,1) (3,|L-[3,1,0)"] - Wy3s3s(Aw)

Cio= X7 [ 3-Re[(w;|L:]4,2,1) (v|L-[4,3,0)"]
— 3 Re[(9|L:[4,1,2) (¢([L-[4,3,0)]
+Re[(¢/|L-4,0,3) (v;|L:|4,3,0)]
+9-Re[(9|L:]4,1,2) (v]L-|4,2,1)"]
—3-Re[(9|L:[4,0,3) (¢/[L.[4,2,1)"]
+3-Re[(v,|L.[4,0,3) (¢;|L.]4,1,2)"] | - Wyaa(Aw)

Car =37 [ VB Re[([L:]4,1,1) (]L-]4,2,0)]
- Re[<1’["f|‘i’Z |47 o, 2> <'¢’f |-iz }4, 2, 0>*]
+ V3 Re[(w,|L:[4,1,2) (#,|L.]4,1,1)"] | - Wy (Aw)

Caz =37 Re[(¥;|L.|4,0,1) (3;|L-]4,1,0)"] - Wya4(Aw)
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Tab. S8: Scattering matrix elements Oy, n; m in the parabolic eigenstate basis.
The indices n; and n; refer to the principal quantum numbers of the eigenstates
occupied in the wave packet and m is the magnetic quantum number. The elements
are off-diagonal in n; and nj, n; # n;, but diagonal in m. The sums over f
involve all parabolic eigenstates with m. The parabolic eigenstates v,, ,,, ., (&7, ¢)
are written as ‘n, Ny, n2>. The parabolic quantum numbers n; and ne obey the
relation n = ny +na +m + 1.

O340 = X7 [ (4| L.]3,2,0) (¢;|L.]4,3,0)"
—2- (3| L:[3,1,1) (¥;|L:|4,3,0)

+ (4| L:]3,0,2) (4| L:[4,3,0)"
—3-(¥;|L:]3,2,0) (¢|L.]4,2,1)"
+6- (9|L2[3,1,1) (/[L-[4,2,1)
—3-(¢;|L:]3,0,2) (¢;|L.]4,2,1)
8y L08,2,0) (b, |LJa,1,2)
( )
)

*

*

—6-(,|L.]3,1,1) (¢;|L-|4,1,2)"
+3(|L:[3,0,2) (| L. |1,1,2
— (%|L:[3,2,0) (¥,;|L:[4,0,3)"
+2-(¢;|L-|3,1,1) (+p,|L.|4,0,3)"

—(3;|L.|3,0,2) (v,|L.|4,0,3)" } Wisa(Aw)

*

Osan = 57 [ (¥]L:[3,1,0) (,|L-|4,2,0)"
= (¥s[L:[3,0,1) (9,|L:]4,2,0)"
— V3 (¥;|L:[3,1,0) (¢|L.]4,1,1)"
+V3-(9;]L:[3,0,1) (9;|L:[4,1,1)"
+ (| L:[3,1,0) (9;|L:[4,0,2)
— (;|L.]3,0,1) (9;|L.]4,0,2)" } Wi a4 (Aw)

Osaz =7 [ (w;|L:]3,0,0) (w,|L.[4,1,0)"
— (3;|L.|3,0,0) (3,|L.|4,0,1)" } - Wisa(Aw)
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The matrix structure of the terms in equation (39) is illustrated in figure S1.
First, the square on the left represents the equation in the atomic orbital
basis with the operator L. Each of the small, colored squares corresponds
to one of the elements in equations (40) to (42). Since the double sum over
i and j in equation (6) is restricted to j > i, the upper right element is
left blank. Secondly, the big square on the right represents the equation in
the parabolic eigenstate basis with the operator L.. The small squares are
filled with the same colors as their related elements on the left. Again, all
elements above the main diagonal with j < ¢ do not have to be evaluated
and are left blank. Additionally, the matrix is partitioned into several blocks
of elements that share the same principal and magnetic quantum numbers.
Due to equation (23), all elements in blocks off-diagonal in m are zero and
left blank. Hence, out of 256 elements of the full matrix, only 50 have to be
considered explicitly. These elements are the terms in tables S6 to S8.

In order to obtain the total number of matrix elements that have to be
evaluated, the number of diagonal elements on the left of figure S1 has
to be multiplied by the sum of nfc over the principal quantum numbers

ng. In lieu thereof, matrix elements of the operator L, have to fulfill the

selection rule éy,,;m,. The operator only connects to states ‘d) f> with the
same magnetic quantum numbers as the basis states involved in a particular
element. Consequently, the numbers of elements diagonal in n and m on
the right of figure S1 have to be multiplied by the sum of n § — T OVer ng.
As shown in figure S2, the number of matrix elements increases significantly
slower with an increasing number of states than in the case of a direct
evaluation in the atomic orbital basis with the operator L.

Here, the sum over f has been truncated at ny = 50. A direct eval-
uation in the atomic orbital basis would entail 85850 three-dimensional
matrix elements. After expansion of the scattering operator L and an-
alytic evaluation of the angular integrals, each matrix element involves
ly + l; — max[|ly — L], |ms — m;|] + 1 radial integrals. It appears that a
numerical evaluation of 492550 integrals would be required. The usage of
the operator L, and the expansion in the parabolic eigenstate basis per-
mits a reduction of the number of matrix elements by almost 80% to 19 706.
Solutions to the latter are provided by equations (28) and (29) and no nu-
merical integration has to be performed. Hence, the computational costs
are reduced significantly.
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Fig. S1: Matrix structure of the contributions to the differential scattering signal
in equation (39). Left: atomic orbital basis with L. Right: parabolic eigenstate
basis with L,. The colored squares represent sums of matrix elements that have
to be evaluated and correspond to B, D4 (), and O34 (#). The blank
parts of the matrices are either redundant or vanish. The matrix in the parabolic
eigenstate basis is partitioned into blocks of elements that share the same principal
and magnetic quantum numbers m and n, respectively.

n=3 n=4

10f

ne

Fig. S2: Number of matrix elements Nyg involved in evaluations of equation (39)
with increasing number of states |'c,b f>. The variable ny denotes the principal
quantum number, at which the sum over f is truncated. Shown are data for an
evaluation in the atomic orbital basis with L (---) and an evaluation in the
parabolic eigenstate basis with L, (—). The matrix elements of the former
are three-, those of the latter one-dimensional.
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S6 Influence of the Pulse Duration

The effect of the pulse duration upon the elastic and inelastic contributions
to the static average is shown in figure S3. The inelastic contribution has
an optimum, whereas the elastic contribution has not.

average / arb. unit

o 1 2 3 4 s
dy/fs

Fig. S3: Elastic (—) and inelastic (—) contributions to the (---)
of the scattering signal at different probe pulse durations d,. The signal has been
evaluated at ¢ =~ 0.45/A, 0, ~ 84°, and ¢, = 90° with a range of detection of
+Aw = 0.25 eV around <E0> =4 keV.
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