Supplementary Material

NMR spectroscopic studies of a TAT-derived model peptide in imidazolium-based ILs: influence on chemical shifts and the *cis/trans* equilibrium state

Christoph Wiedemann¹, Oliver Ohlenschäger², Carmen Mrestani-Klaus¹, and Frank Bordusa^{1,*}

¹Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany ²Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany

* Corresponding author: frank.bordusa@biochemtech.uni-halle.de

Fig. S 1: a) Far UV-CD spectra of the W2-TAT(1-9) peptide dissolved in water. Circular dichroism (CD) spectra were recorded on a JASCO J-710 CD spectropolarimeter at 303.2 K in a 1 mm quartz cuvette to estimate the secondary structure content. The instrument was calibrated with D-10-camphorsulphonic acid (Sigma Aldrich). The peptide concentration was 157 μ M and verified spectrophotometrically at 280 nm with the extinction coefficient calculated using ProtParam (http://web.expasy.org/protparam/). Each CD spectrum represents the average of 3 accumulated scans at 20 nm/ min with a 1 nm slit width and a time constant of 2 s for a nominal resolution of 0.7 nm. Data were collected between 185 and 320 nm by taking points every 1 nm. No further zeroing was applied after background subtraction. Data were processed and visualized with CAPITO [1]. b) The 'double wavelength' plot ([Θ]₂₀₀ plotted versus [Θ]₂₂₂) allows to deduce the folding state of TAT(W2) [2]. c) Far UV-CD spectra of the TAT(W2) collected at pH 7 (black), pH 2 (blue) and pH 12 (green). Experimental conditions as described above.

Table S 1: The secondary structure elements of W2-TAT(1-9) estimated from CD spectrum. Estimation of structural contents are given in percent.

	helical	$\beta\text{-strand}$	irregular
CAPITO ^a	4 - 13	18 - 41	55 - 69
SELCON3 ^b	10	29	61
CONTIN ^b	8	33	59
$CDSSTR^{b}$	6	33	61
DSSP trans W2-TAT $(1-9)^{c}$	0	33	67
DSSP cis W2-TAT $(1-9)^{c}$	0	55	45

^a [1]

^b included in the software CDPro [3]

^c secondary structure determination based on the ROE calculated structures [4]

	Н	Ν	N^{δ}	\mathbf{N}^{ϵ}	\mathbf{H}^{α}	\mathbf{H}^{β}	H^{γ}	H^{δ}	\mathbf{H}^{ϵ}	H^{ζ}	\mathbf{H}^{η}	С	C^{α}	\mathbf{C}^{β}	\mathbf{C}^{γ}	\mathbf{C}^{δ}	C^{ϵ}	C^{ζ}	\mathbf{C}^{η}
M1					3.92	2.03,2.03	2.48,2.48		2.02			172.62	55.31	33.18	30.93		16.76		
W2				129.38	8 5.02	3.15, 3.34	L	7.29	10.13, 7.71	7.18,7.51	7.26	174.10	55.14	29.10	111.33	$129.47,\!127.70$	120.97,138.89	122.25,114.86	$5\ 124.83$
$\mathbf{P3}$					4.45	2.24, 1.89	1.96, 1.96	3.78, 3.49				176.48	63.31	31.99	27.30	50.86			
V4	8.00	119.83			4.09	2.01	$0.92,\! 0.92$					175.65	62.05	33.03	20.48,20.48				
D5	8.31	125.63			4.84	2.54, 2.79)					174.81	52.06	41.54	179.94				
P6					4.41	2.22, 1.93	1.95, 1.95	3.81, 3.81				176.80	63.50	32.19	26.94	50.88			
N7	8.52	118.03	114.08	3	4.68	2.80, 2.75	i	7.76, 6.90				175.08	53.74	38.96	177.29				
I8	7.75	120.40			4.19	1.90	0.90, 1.42, 1.16	0.86				175.19	61.34	38.97	27.07, 17.50	12.98			
E9	7.89	129.76			4.11	1.99,1.88	2.18, 2.18					180.92	58.19	31.30	36.67	184.64			

Table S 2: ¹H, ¹³C and ¹⁵N chemical shift assignments of the *trans* configured W2-TAT(1-9) peptide in aqueous solution (90% $H_2O/10\%$ D_2O (v/v), pH 6.5) at 303.2 K

Table S 3: ¹H, ¹³C and ¹⁵N chemical shift assignments of the *cis* configured W2-TAT(1-9) peptide in aqueous solution (90% $H_2O/10\% D_2O$ (v/v), pH 6.5) at 303.2 K

	Η	Ν	\mathbf{N}^{δ}	\mathbf{N}^{ϵ}	\mathbf{H}^{α}	\mathbf{H}^{β}	\mathbf{H}^{γ}	\mathbf{H}^{δ}	H^{ϵ}	\mathbf{H}^{ζ}	\mathbf{H}^{η}	\mathbf{C}	\mathbf{C}^{α}	\mathbf{C}^{β}	\mathbf{C}^{γ}	C^{δ}	$\mathbf{C}^{\boldsymbol{\epsilon}}$	\mathbf{C}^{ζ}	\mathbf{C}^{η}
M1					4.15	2.16, 2.16	2.61, 2.61		2.15			171.85	55.29	33.16	30.89		16.81		
W2				130.13	4.58	3.29, 3.16		7.27	10.21, 7.60	7.17,7.52	7.26	173.88	56.41	30.89	110.89	$129.41,\!127.48$	$120.86,\!138.97$	$122.25,\!114.86$	124.81
$\mathbf{P3}$					3.38	1.60, 1.07	1.42, 1.47	3.21, 3.37				175.62	62.97	33.49	24.36	49.99			
V4	7.83	120.82			3.84	1.99	0.89, 0.89					175.77	63.21	32.48	21.07, 21.07				
D5	8.02	124.23			4.82	2.74, 2.47						174.79	51.96	41.61	179.74				
$\mathbf{P6}$					4.40	2.22, 1.95	1.93, 1.93	3.77, 3.77				176.90	63.50	32.17	26.89	50.84			
N7 3	8.50	117.99 1	14.03		4.66	2.80, 2.74		7.72, 6.89				174.89	53.75	38.97	177.38				
I8	7.80	120.46			4.19	1.90	1.16, 1.42, 0.88	0.85				175.19	61.32	38.96	27.06, 17.46	12.98			
E9	7.88	129.58			4.11	2.00, 1.87	2.18, 2.18					180.90	58.19	31.30	36.67	184.59			

Fig. S 2: Secondary chemical shifts of the W2-TAT(1-9) *all-trans* (a) and *cis* (b) isoform. Secondary shifts are defined as the difference between the observed chemical shift and the corresponding random coil value. Random coil chemical shifts of the W2-TAT(1-9) peptide were calculated using the CamCoil webserver [5].

Fig. S 3: Proline ${}^{13}C^{\beta}$ and ${}^{13}C^{\gamma}$ chemical shift analysis for the *cis*- and *all-trans*-configured W2-TAT(1-9) peptide. Filled circles and filled triangle correspond to the chemical shifts characteristics of the numbered amino acids. The average ${}^{13}C^{\beta}$ and ${}^{13}C^{\gamma}$ chemical shifts for *cis* and *trans* proline is given by open triangle and open circle, respectively [6, 7]. Standrad deviations are indicated by bars.

Fig. S 4: NMR solution structures of the *all-trans* $(\mathbf{a,c,e,g})$ and *cis* $(\mathbf{b,d,f,h})$ isoform of the W2-TAT(1-9) peptide. $(\mathbf{a,b})$ Superimposed backbone traces for the 15 structures with the lowest energy after OPAL refinement. In the *all-trans* conformer residues 6-9 superimpose with a backbone r.m.s.d. of 0.58 and resemble a turn-like structure (\mathbf{e}) whilst the more N-terminal residues are disordered (\mathbf{c}) . In contrast, in the *cis* conformer the residues M1-V4 (\mathbf{d}) and P6-E9 (\mathbf{f}) superimpose with r.m.s.d. values of 0.23 and 0.30, respectively, indicating the higher structural definition of the cis conformer. Although no standard turn elements could be deduced, in both, the N- and C-terminal stretches these loop elements revert the backbone direction by 180° $(all-trans (\mathbf{g}), cis (\mathbf{h}))$.

Fig. S 5: ¹H (a) and ¹³C (b) NMR chemical shift differences ($\Delta\delta$) of *all-trans*-configured W2-TAT(1-9) in various IL/ solvent systems at 303 K. W2-TAT(1-9) concentration in IL/ solvent systems was 90 mM and 10 mM in the reference water system, respectively. The IL concentration was 3 M (approximately 70% IL/30% D₂O v/v). In all experiments pH was adjusted to 6.5.

Fig. S 6: ¹H (a) and ¹³C (b) NMR chemical shift differences ($\Delta\delta$) of *cis*-configured W2-TAT(1-9) in various IL solvent systems at 303 K. W2-TAT(1-9) concentration in IL/ solvent systems was 90 mM and 10 mM in the reference water system, respectively. The IL concentration was 3 M (approximately 70% IL/30% D₂O v/v). In all experiments pH was adjusted to 6.5. The spectral quality of the 3M [EMIM][Et₂PO₄] sample allows only the assignment of a few unambiguous *cis*-configured W2-TAT(1-9) signals.

Fig. S 7: Summed up ¹³C chemical shift differences ($\sum \Delta \delta$) of selected carbons for *cis*-(blue) and *all-trans*-configured (red) W2-TAT(1-9) peptide in different IL solvent systems.

Fig. S 8: a) ³⁵Cl chemical shifts of pure [EMIM][Cl] (7.66 ppm, red line) and in the presence of 10 mM W2-TAT(1-9) peptide (8.56 ppm, blue line). b) ⁷⁹Br chemical shifts of pure [EMIM][Br] (23.6 ppm, red line) and in the presence of 10 mM W2-TAT(1-9) peptide (30.7 ppm, blue line). Spectra were collected at 303 K on a Bruker 400 MHz AvanceIII system equipped with a 5 mm room-temperatue double resonance broad band probe and 32 transients. The probe was tuned to the appropriate frequencies. The spectral width for ³⁵Cl was 2354 Hz with transmitter frequency offset of 0 Hz and acquisition time was 0.217 s with a recycle delay of 1 s. The ³⁵Cl pulse length was 14 μ s at 90 W. The spectral width for ⁷⁹Br was 10 kHz with transmitter frequency offset of 1303.23 Hz and acquisition time was 0.00512s with a recycle delay of 1 s. The ⁷⁹Br pulse length was 8 μ s at 60 W. The ³⁵Cl chemical shifts were referenced to 0.1 M NaCl solution in D₂O.

Fig. S 9: ¹H and ¹³C chemical shift differences ($\Delta\delta$) of protons and carbons for *all-trans*- (upper panel) and *cis*-configured (lower panel) W2-TAT(1-9) as function of [EMIM][Br] concentration. The reference system was 10 mM W2-TAT(1-9), pH 6.5, in 90/10% H₂O/D₂O. The peptide concentration was 10 mM for samples up to 2.1 M [EMIM][Br] and experiments were carried out with a 5 mm room-temperature BBI-probe. Spectra for 3 M [EMIM][Br] were carried out with a 4 mm triple resonance HR-MAS probe at 6 kHz spinning rate and a W2-TAT(1-9) concentration of 90 mM. All NMR experiments were acquired at 303 K and the pH was adjusted to 6.5. Depicted are all ¹H and ¹³C $\Delta\delta$ in sequential order per residue as given in Fig. S5 and S6.

Fig. S 10: ¹H and ¹³C chemical shift differences ($\Delta\delta$) of protons and carbons for *all-trans*- (upper panel) and *cis*-configured (lower panel) W2-TAT(1-9) as function of [EMIM][OAc] concentration. The reference system was 10 mM W2-TAT(1-9), pH 6.5, in 90/10% H₂O/D₂O. The peptide concentration was 10 mM for samples up to 2.1 M [EMIM][OAc] and experiments were carried out with a 5 mm room-temperature BBI-probe. Spectra for 3 M [EMIM][OAc] were carried out with a 4 mm triple resonance HR-MAS probe at 6 kHz spinning rate and a W2-TAT(1-9) concentration of 90 mM. All NMR experiments were acquired at 303 K and the pH was adjusted to 6.5. Depicted are all ¹H and ¹³C $\Delta\delta$ in sequential order per residue as given in Fig. S5 and S6.

(a) ¹H $\Delta\delta$ for all-trans W2-TAT(1-9) in [EMIM][CF₃CO₂] (b) ¹³C $\Delta\delta$ for all-trans W2-TAT(1-9) in [EMIM][CF₃CO₂]

(c) ¹H $\Delta\delta$ for *cis* W2-TAT(1-9) in [EMIM][CF₃CO₂]

(d) ¹³C $\Delta\delta$ for *cis* W2-TAT(1-9) in [EMIM][CF₃CO₂]

Fig. S 11: ¹H and ¹³C chemical shift differences ($\Delta\delta$) of protons and carbons for *all-trans*- (upper panel) and *cis*-configured (lower panel) W2-TAT(1-9) as function of [EMIM][CF₃CO₂] concentration. The reference system was 10 mM W2-TAT(1-9), pH 6.5, in 90/10% H₂O/D₂O. The peptide concentration was 10 mM for samples up to 2.1 M [EMIM][CF₃CO₂] and experiments were carried out with a 5 mm room-temperature BBI-probe. Spectra for 3 M [EMIM][CF₃CO₂] were carried out with a 4 mm triple resonance HR-MAS probe at 6 kHz spinning rate and a W2-TAT(1-9) concentration of 90 mM. All NMR experiments were acquired at 303 K and the pH was adjusted to 6.5. Depicted are all ¹H and ¹³C $\Delta\delta$ in sequential order per residue as given in Fig. S5 and S6.

(a) ¹H $\Delta\delta$ for all-trans W2-TAT(1-9) in [EMIM][Et₂PO₄] (b) ¹³C $\Delta\delta$ for all-trans W2-TAT(1-9) in [EMIM][Et₂PO₄]

(c) ¹H $\Delta\delta$ for *cis* W2-TAT(1-9) in [EMIM][Et₂PO₄]

(d) ¹³C $\Delta\delta$ for *cis* W2-TAT(1-9) in [EMIM][Et₂PO₄]

Fig. S 12: ¹H and ¹³C chemical shift differences ($\Delta\delta$) of protons and carbons for *all-trans*- (upper panel) and *cis*-configured (lower panel) W2-TAT(1-9) as function of [EMIM][Et₂PO₄] concentration. The reference system was 10 mM W2-TAT(1-9), pH 6.5, in 90/10% H₂O/D₂O. The peptide concentration was 10 mM for samples up to 2.1 M [EMIM][Et₂PO₄] and experiments were carried out with a 5 mm room-temperature BBI-probe. Spectra for 3 M [EMIM][Et₂PO₄] were carried out with a 4 mm triple resonance HR-MAS probe at 6 kHz spinning rate and a W2-TAT(1-9) concentration of 90 mM. All NMR experiments were acquired at 303 K and the pH was adjusted to 6.5. Depicted are all ¹H and ¹³C $\Delta\delta$ in sequential order per residue as given in Fig. S5 and S6.

Table S 4: Linear regression analysis of W2-TAT(1-9) ¹H and ¹³C chemical shifts in different ILs as shown in Figure S9-12. The slope is given in $\Delta\delta/M$ [ppm/M] IL.

	tra	ns	c	is
	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$
[EMIM][Br]	$0.083{\pm}0.019$	$0.119{\pm}0.074$	$0.092{\pm}0.029$	$0.071 {\pm} 0.046$
$[\text{EMIM}][\text{Et}_2\text{PO}_4]$	-0.024 ± 0.034	$-0.059 {\pm} 0.153$	-0.047 ± 0.037	-0.123 ± 0.252
$[\text{EMIM}][\text{CF}_3\text{CO}_2]$	$0.013 {\pm} 0.021$	-0.001 ± 0.083	$0.010 {\pm} 0.041$	-0.035 ± 0.117
[EMIM][OAc]	-0.096 ± 0.019	$-0.108 {\pm} 0.069$	-0.067 ± 0.035	$-0.101 {\pm} 0.123$

Table S 5: Effect of ILs and 0.5 M LiCl in TFE on the W2-TAT(1-9) *all-trans/cis* equilibrium state obtained by ¹H NMR spectroscopy. Presented are the *cis*-population contents. Conditions: 10 mM W2-TAT(1-9), pH adjusted to 6.5, were dissolved in the respective IL. The reference system was 10 mM W2-TAT(1-9), pH 6.5, in 90/10% H₂O/D₂O.

		IL concentration							
Solvent system	0 M	$0.1 {\rm M}$	$0.25~{\rm M}$	$0.5 {\rm M}$	$1 \mathrm{M}$	$2.1 {\rm M}$	$3 \mathrm{M}$		
H_2O/D_2O	0.46								
$TFE-d_3/$ 0.5M LiCl	0.64								
[EMIM][OAc]	0.47	0.48	0.46	0.42	0.38	0.32	0.27		
$[MMIM][Me_2PO_4]$	0.49	0.42	0.39	0.36	0.32	0.30	0.29		
$[\text{EMIM}][\text{Me}_2\text{PO}_4]$	0.47	0.40	0.36	0.33	0.29	0.28	0.29		
$[\text{EMIM}][\text{Et}_2\text{PO}_4]$	0.48	0.48	0.47	0.44	0.43	0.37	0.33		
$[\text{EMIM}][\text{CF}_3\text{CO}_2]$	0.45	0.38	0.34	0.29	0.26	0.27	0.29		
[EMIM][Cl]	0.47	0.45	0.42	0.39	0.37	0.35	0.31		
[EMIM][Br]	0.47	0.39	0.36	0.35	0.31	0.35	0.30		
[EMIM][SCN]	0.46	0.40	0.38	0.35	0.35	0.25	0.29		

References Supplementary Data

- Christoph Wiedemann, Peter Bellstedt, and Matthias Görlach. Capito-a web server-based analysis and plotting tool for circular dichroism data. *Bioinformatics*, 29(14):1750–1757, Jul 2013.
- [2] Vladimir N. Uversky. Natively unfolded proteins: a point where biology waits for physics. Protein Sci, 11(4):739–756, Apr 2002.
- [3] N. Sreerama and R. W. Woody. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem, 287(2):252–260, Dec 2000.
- W. Kabsch and C. Sander. Dictionary of protein secondary structure: pattern recognition of hydrogenbonded and geometrical features. *Biopolymers*, 22(12):2577–2637, Dec 1983.
- [5] Alfonso De Simone, Andrea Cavalli, Shang-Te Danny Hsu, Wim Vranken, and Michele Vendruscolo. Accurate random coil chemical shifts from an analysis of loop regions in native states of proteins. J Am Chem Soc, 131(45):16332–16333, Nov 2009.
- [6] Mario Schubert, Dirk Labudde, Hartmut Oschkinat, and Peter Schmieder. A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on 13C chemical shift statistics. J Biomol NMR, 24(2):149–154, Oct 2002.
- [7] Yang Shen and Ad Bax. Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts. J Biomol NMR, 46(3):199–204, Mar 2010.