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Deriving the EHF equations for [1s1p1d] muonic basis set and their 

computational implementation 

Previous computational experiences reveal that a combination of the s-, p- and d-type 

Cartesian gaussian functions suffices for a relatively accurate description of the nuclear spatial 

orbital at the NEO-HF level [S1]. Accordingly, a [1s1p1d] muonic basis set and a [4s1p] 

electronic basis set are used to expand the muonic spatial orbital and to describe the electronic 

distribution around the muon, respectively.  A joint center, a banquet atom, at the z-axis is 

employed for all the muonic and the electronic basis functions, and the clamped carbon and 

nitrogen nuclei are placed at the same axis while the center of the coordinate system is fixed at 

the clamped carbon nucleus.  In order to describe the electronic distribution around the clamped 

nuclei Pople-type 6-311+g(d) basis set is placed at the positions of the clamped nuclei [S2-S4]. 

For the muonic and corresponding electronic basis functions all parameters, i.e., the SCF linear 

coefficients, the exponents of the gaussian functions and the position of the joint center of the 

basis functions are optimized variationally during the NEO-HF calculation.  In the process of the 

optimization of the exponents of the gaussian basis functions, the exponents of each type of 

gaussian function, e.g., p -type, are constrained to be the same for all members of the subset, 

e.g., , ,x y zp p p , and are denoted as , ,s p d    (the   subscript is dropped hereafter for brevity).  

On the other hand, for the electronic basis sets centered on the clamped nuclei only the SCF 

coefficients are optimized, as is usual in the course of the conventional HF calculations [S5].  

The geometry of the clamped nuclei is optimized using the analytical gradients of the total 

energy [S6], while for the optimization of the exponents of the basis functions a non-gradient 

optimization algorithm is used as described previously [S7-S10].  The mass of the muon was 

fixed at  in atomic units throughout the calculations and the whole NEO-HF calculations 206.768

are also redone on hydrogen cyanide molecule where the proton is conceived as a quantum 

particle with a mass fixed at  in atomic units.  1836

Table S1 offers the variationally determined exponents and the SCF coefficients of the 

muonic and the protonic basis functions; from the original ten basis functions in [1s1p1d] basis 

set, only five basis functions namely, , have non-zero SCF coefficients.  2 2 2, , , ,z x y z
s p d d d
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Table S1- The variationally optimized SCF coefficients and exponents
of the muonic and the protonic basis functions derived from the
NEO-HF calculations.

CN HCN
Type of 

basis 
functions

SCF 
coefficients exponents

SCF 
coefficients exponents

s 0.789 7.84 0.826 27.62
pz -0.206 5.51 -0.218 21.86
dx

2 0.143 5.94 0.104 22.73
dy

2 0.143 0.104
dz

2 0.059 0.059
 

The normalized muonic and protonic spatial orbitals are both linear combinations of these five 
basis functions: 

2 2 21 2 3 4 5z x y z
spd s p d d dc c c c c           , 
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proton spd s p d d dc c c c c              

 
1

3 42

3

8,   s
s s s c sN Exp r R N

 


 
     

 

rr ,    

 
1/45

2

3

128
,   = ,   = 

z

p
p p c p c p c cN z Exp r R N z z Z   


 


 

     
 

rr

   
2

1/472 22 2
3

2048,   = ,   =
9x

d
d d c d c d c cN x Exp r R N x x X   

 


 
    

 

rr  

   
2

2 22 2  ,   =
y

d d c d c c cN y Exp r R y y Y       
rr

    
2

2 22 2  ,   
z

d d c d c c cN z Exp r R z z Z        
rr  (S1) 

Figure S1 compares the one-particle densities,  and , and in line 2
spd    2

proton proton spd  

with the numerical data in Table S1 it is clear that the latter is much more concentrated than the 

former while the anisotropic nature of both distributions is evident from the offered counter 

maps.  
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Figure S1- a) The one-particle protonic (dashed line) and muonic (full line) densities 
depicted along a y-axis, which goes through muon and is perpendicular to the z-axis. b) 
The same densities along the z-axis. The contour maps of the muonic (c) and the protonic 
(d) one-particle densities in µCN and HCN depicted at yz-plane, respectively (the contours 
lines are from ρ = 1 to 7, increased in integer steps). The clamped carbon nucleus is placed 
at the center of coordinate system while the clamped nitrogen nucleus and the banquet 
atom are placed at the negative and the positive sides of the z-axis, respectively.

Table S2 offers the total, the electronic, and the nuclear kinetic energies as well as the inter-

nuclear distances computed at the NEO-HF level (the banquet atom is used as the third center).  

Table S2- Some results of the NEO-HF calculations.
Energy CN HCN
total -92.79837 -92.86175

electronic kinetic 92.72631 92.81344
 or proton kinetic 0.04216 0.01828

Distances
C-N 1.128 1.127

Bq-C 1.132 1.082
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The results demonstrate that upon the substitution of the proton with the muon, the latter’s mean 

distribution and the kinetic energy increase relative to those of the former’s.  Also, the particle 

with the larger mass, because of its larger localization, is capable of localizing electrons more 

efficiently [S7], thus the electronic kinetic energy of the hydrogen cyanide molecule is larger 

than its muonic analog.  

Taking into account that the NEO-HF calculation yields the anisotropy and anharmonicity of 
muon’s vibrations using , it seems  to be a proper model to derive .  spd  spd 

eff eff eff
eV V U 

Incorporating  into equation (2), in the main text, and after some mathematical spd 

manipulations, the corresponding effective electron-muon interaction, , is derived:eff
e spdV 
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In this expression  and   while ,   , 1 5tw t wc c c t w   ,kl k l    ,   , , ,kl k lN N N k l s p d 
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to demonstrate that if  and  then based on the fact that 1 1c  2 3 4 5 0c c c c   

 [S11], the effective electron-muon interaction reduces to that 0,

2

8
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derived in equation (3) in the main text.  Figure S2 depicts  demonstrating that in  eff
spd iV rr

contrast to , electrons experience a non-Coulombic anisotropic potential.  eff
e sV 
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Figure S2- a) The effective muon-electron (full line) and proton-electron (dashed line) 
interaction potentials depicted along a y-axis, which goes through muon and is perpendicular to 
the z-axis. b) The same effective potentials along the z-axis. The contour maps of effective 
interaction potentials in µCN (c) and HCN (d) depicted at yz-plane (the contours lines are from 

0.7 to 1.5eff
spdV    , decreased in -0.1 steps). The clamped carbon nucleus is placed at the center 

of coordinate system while the clamped nitrogen nucleus and the banquet atom are placed at the 
negative and the positive sides of the z-axis, respectively.

After some mathematical manipulations, the part of the effective potential, which appears 

because of the kinetic energy of the muon and the muon-clamped nuclei interaction, is derived:    
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 and  then  reduces to .  Clearly, this effective potential, 1 1c  2 3 4 5 0c c c c    eff
spdU eff

sU

, is much more complicated and more reliable than the effective potential in eff eff eff
spd e spd spdV V U 

equation (3) in the main text, yielding a new set of the EHF equations:
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The solution of the algebraic (Roothan-Hall-Hartree-Fock) version of equations (S4) using the 

basis set given in equation (S1) and simultaneous optimization of the muonic parameters namely,

 and , as well as the geometry of the clamped nuclei, , is  ,   1 5ic i    ,   , ,k k s p d   R

r

completely equivalent to the solution of the NEO-HF equations and simultaneous full 

optimization of the parameters of the muonic [1s1p1d] basis set and the geometry of the clamped 

nuclei.  In the case of CN , the results given in Tables S1 and S2 are recovered from equations 

(S4) apart from minor differences emerging from varied numerical accuracy of the 

corresponding computational procedures.  In the case of the muonic parameters, it is evident 
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from Table S1 that: , and if one starts from an initial guess where  and 1 1tc c  1 1c 

, the starting effective electron-muon interaction, which is equal to that in 2 3 4 5 0c c c c   

equation (3) in the main text, varies marginally during the optimization procedure.  As is also 

evident from Figure S3, the first term in the equation (S2), , is one order of 0,
2 i

ss ss
ss

N F

 
 
 

magnitude larger than all the remaining terms in the electron-muon interaction and the other 

terms act more like perturbations modifying this dominant term.  

Figure S3- a) The components (the first term in equation (S2), 0,ssF , shown as green dotted, and all 

remaining terms, shown as blue dashed lines) and the total amount (full line) of the effective   -
electron interaction potential in along a y-axis, which goes through muon and is perpendicular to the 
z-axis, and b) along z-axis. The same components and total amount of the effective proton-electron 
interaction potential along the y-axis, and (c) along the z-axis (d). The clamped carbon nucleus is 
placed at the center of coordinate system while the clamped nitrogen nucleus and the banquet atom 
are placed at the negative and the positive sides of the z-axis, respectively.
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Further simplifications of the electron-muon potential are feasible based on this observation and 

one may derive a more compact electron-muon (or analogously muon-clamped nucleus) 

interaction potential simpler than equation (S2) (or equation (S3)) without a serious loss in 

accuracy as will be discussed in a future study.  
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             Table S3- The optimized [1s] nuclear exponents. 
 X Exponent Molecule X Exponent

LiX T 37.4538 NX3 T 43.5257
D 29.9147 D 34.7564
H 20.1689 H 23.4532
 5.2910  6.2008

BeX2 OX2

T 40.6469 T 42.7551
D 32.4777 D 34.1756
H 21.9326 H 23.0908
 5.8049  6.1171

BX3 FX
T 42.8437 T 41.5458
D 34.2321 D 33.1874
H 23.1255 H 22.3832
 6.1289  5.8789

CX4

T 43.5861
D 34.8183
H 23.1255
 6.2158

 X Exponent Molecule X Exponent
NaX T 36.1904 PX3 T 40.9091

D 28.8930 D 32.6743
H 19.4768 H 22.0381
 5.0916  5.7783

MgX2 SX2

T 38.2605 T 40.2265
D 30.5693 D 32.1059
H 20.6323 H 21.6323
 5.4316  5.6414

AlX3 ClX
T 40.0436 T 39.0553
D 31.9967 D 31.1498
H 21.6048 H 20.9424
 5.7026  5.4128

SiX4

T 41.0820
D 32.8258
H 22.1615
 5.8417

11



Table S4- The optimized electronic exponents of [4s1p:1s] basis set. 
 s s s s p  s s s s p

LiT 8.71 1.67 0.41 0.11 0.36 LiD 8.09 1.60 0.40 0.11 0.36
BeT2 10.79 2.13 0.52 0.14 0.74 BeD2 9.97 2.05 0.51 0.14 0.74
BT3 12.94 2.65 0.67 0.18 1.00 BD3 11.90 2.54 0.65 0.18 1.00
CT4 14.02 2.94 0.77 0.22 1.15 CD4 12.74 2.78 0.75 0.22 1.14
NT3 14.47 3.06 0.82 0.26 0.79 ND3 13.01 2.86 0.78 0.26 0.79
OT2 9.87 1.86 0.51 0.15 0.70 OD2 9.12 1.77 0.49 0.15 0.69

FT 10.34 2.00 0.58 0.16 0.84 FD 9.54 1.90 0.56 0.16 0.83

NaT 7.79 1.47 0.35 0.10 0.26 NaD 7.21 1.40 0.34 0.09 0.26
MgT2 8.58 1.63 0.39 0.11 0.48 MgD2 7.98 1.56 0.38 0.10 0.48
AlT3 9.54 1.83 0.44 0.13 0.49 AlD3 8.85 1.76 0.43 0.12 0.49
SiT4 10.40 2.02 0.49 0.15 0.57 SiD4 9.62 1.94 0.48 0.15 0.57
PT3 10.80 2.13 0.53 0.17 0.56 PD3 9.96 2.04 0.52 0.17 0.56
ST2 11.24 2.24 0.56 0.18 0.58 SD2 10.35 2.15 0.55 0.18 0.57
ClT 12.65 2.62 0.66 0.22 0.56 ClD 11.67 2.52 0.65 0.22 0.56

 S S S S P  S S S S P
LiH 6.86 1.45 0.37 0.11 0.34 Liµ 3.54 0.97 0.29 0.09 0.31

BeH2 8.53 1.88 0.49 0.13 0.74 Beµ2 4.41 1.31 0.41 0.12 0.73
BH3 10.16 2.35 0.63 0.18 0.98 Bµ3 5.16 1.65 0.53 0.16 0.88
CH4 10.55 2.49 0.71 0.21 1.10 Cµ4 3.60 0.89 0.27 0.07 0.95
NH3 10.49 2.46 0.72 0.24 0.77 Nµ3 4.02 1.05 0.34 0.10 0.69
OH2 7.89 1.63 0.47 0.14 0.69 Oµ2 4.45 1.21 0.40 0.12 0.65

FH 8.16 1.73 0.53 0.15 0.83 Fµ 3.86 1.01 0.35 0.10 0.79

NaH 6.19 1.28 0.32 0.09 0.25 Naµ 3.24 0.86 0.25 0.08 0.23
MgH2 6.90 1.45 0.36 0.10 0.48 Mgµ2 3.73 1.04 0.30 0.09 0.46
AlH3 7.63 1.62 0.41 0.12 0.48 Alµ3 4.07 1.15 0.34 0.11 0.43
SiH4 8.28 1.79 0.46 0.14 0.56 Siµ4 4.43 1.28 0.39 0.13 0.52
PH3 8.49 1.86 0.49 0.16 0.55 Pµ3 4.27 1.24 0.39 0.15 0.47
SH2 8.85 1.98 0.53 0.18 0.56 Sµ2 4.55 1.36 0.44 0.16 0.49
ClH 9.88 2.33 0.62 0.22 0.55 Clµ 5.61 1.82 0.55 0.20 0.49
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          Table S5- The optimized muonic exponents of [4s1p:2s2p2d] basis set.  
 s s p p d d

Liµ 7.52 7.00 5.53 4.01 6.59 4.63
Beµ2 8.28 6.34 4.43 3.79 6.57 4.75
Bµ3 8.00 6.83 5.60 3.82 6.84 4.77
Cµ4 8.93 7.66 6.01 4.11 7.18 4.98
Nµ3 8.14 7.34 6.54 4.40 7.31 4.77
Oµ2 9.58 5.81 6.94 4.49 7.68 4.64
Fµ 11.37 5.38 7.16 4.30 5.45 4.05

Naµ 7.56 7.08 5.63 3.95 6.22 4.42
Mgµ2 7.72 7.00 5.97 4.41 6.50 4.60
Alµ3 7.54 6.63 5.80 4.45 6.40 4.53
Siµ4 7.87 6.75 5.66 4.23 6.56 4.64
Pµ3 8.51 6.75 6.13 4.34 6.63 4.67
Sµ2 7.44 6.75 6.35 4.29 6.66 4.46
Clµ 7.38 6.63 6.22 4.06 6.63 4.29
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Table S6- The optimized electronic exponents of [4s1p:2s2p2d] basis set. 
s s s s p  s s s s p

LiT 8.74 1.67 0.41 0.11 0.29 LiD 8.06 1.60 0.40 0.11 0.29
BeT2 10.80 2.14 0.52 0.14 0.68 BeD2 10.47 2.21 0.57 0.16 0.12
BT3 12.91 2.65 0.67 0.18 0.91 BD3 11.89 2.54 0.65 0.18 0.90
CT4 13.57 2.85 0.75 0.22 1.00 CD4 12.19 2.66 0.72 0.22 0.98
NT3 14.30 3.12 0.85 0.27 0.61 ND3 12.91 2.93 0.82 0.26 0.60
OT2 9.16 1.75 0.48 0.14 0.59 OD2 8.59 1.70 0.47 0.14 0.59

FT 9.61 1.92 0.56 0.15 0.71 FD 8.94 1.85 0.55 0.15 0.71

NaT 7.84 1.47 0.35 0.10 0.23 NaD 7.25 1.41 0.34 0.09 0.22
MgT2 8.61 1.63 0.39 0.11 0.45 MgD2 8.57 1.73 0.43 0.11 0.14
AlT3 10.18 2.03 0.51 0.15 0.08 AlD3 9.40 1.94 0.49 0.15 0.08
SiT4 10.37 2.02 0.49 0.15 0.51 SiD4 9.61 1.94 0.48 0.15 0.51
PT3 10.72 2.13 0.53 0.17 0.49 PD3 9.90 2.04 0.52 0.17 0.48
ST2 11.05 2.24 0.57 0.18 0.49 SD2 10.20 2.15 0.56 0.18 0.49
ClT 12.18 2.62 0.67 0.22 0.47 ClD 11.24 2.52 0.66 0.22 0.47

 s s s s p  s s s s p
LiH 6.90 1.46 0.37 0.11 0.28 Liµ 3.54 0.96 0.29 0.09 0.23

BeH2 8.84 2.01 0.54 0.15 0.12 Beµ2 4.43 1.31 0.41 0.12 0.63
BH3 10.13 2.34 0.63 0.18 0.87 Bµ3 5.07 1.60 0.52 0.16 0.73
CH4 10.30 2.41 0.69 0.21 0.94 Cµ4 3.63 0.91 0.28 0.07 0.77
NH3 10.35 2.50 0.75 0.25 0.59 Nµ3 4.07 1.08 0.34 0.10 0.54
OH2 7.50 1.58 0.45 0.13 0.58 Oµ2 4.40 1.23 0.40 0.12 0.54

FH 7.79 1.73 0.53 0.15 0.70 Fµ 4.24 1.33 0.48 0.13 0.64

NaH 6.23 1.29 0.32 0.09 0.22 Naµ 3.28 0.87 0.25 0.08 0.19
MgH2 7.38 1.59 0.41 0.11 0.14 Mgµ2 3.77 1.04 0.30 0.09 0.41
AlH3 8.05 1.78 0.47 0.14 0.08 Alµ3 4.11 1.16 0.34 0.11 0.36
SiH4 8.27 1.80 0.46 0.14 0.49 Siµ4 4.43 1.28 0.38 0.13 0.43
PH3 8.47 1.87 0.50 0.16 0.46 Pµ3 4.30 1.26 0.40 0.15 0.38
SH2 8.74 1.99 0.54 0.18 0.47 Sµ2 4.30 1.31 0.44 0.16 0.38
ClH 6.31 1.96 0.58 0.21 0.49 Clµ 5.47 1.88 0.59 0.20 0.39
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Table S7- Total energies computed with the optimized and averaged exponents using [6-311+g(d)/4s1p:1s] 
and [6-311+g(d)/4s1p:2s2p2d] basis sets. The energy differences between the optimized and averaged basis 
sets have been given in columns with the headline “Diff.” in milli-Hartrees. The two last columns contain the 
energy difference between the two averaged basis sets and between the two optimized basis sets in milli-
Hartrees.

1s 1s 1s 2s2p2d 2s2p2d  2s2p2d Ave. Opt.
 Opt. Ave. Diff. Opt. Ave. Diff. Diff. Diff.

Liµ -7.89187 -7.89149 0.38 -7.89199 -7.89178 0.21 0.29 0.12
Beµ2 -15.56610 -15.56603 0.07 -15.56657 -15.56651 0.05 0.49 0.47
Bµ3 -26.07424 -26.07322 1.02 -26.07575 -26.07532 0.43 2.09 1.51
Cµ4 -39.77161 -39.76978 1.83 -39.77534 -39.77454 0.80 4.76 3.73
Nµ3 -55.88687 -55.88607 0.80 -55.89250 -55.89232 0.17 6.25 5.63
Oµ2 -75.83795 -75.83754 0.41 -75.84431 -75.84408 0.24 6.53 6.36
Fµ -99.94933 -99.94847 0.86 -99.95406 -99.95334 0.72 4.87 4.73

    
Naµ -162.28828 -162.28736 0.92 -162.28838 -162.28783 0.55 0.47 0.10

Mgµ2 -200.53838 -200.53790 0.48 -200.53866 -200.53839 0.27 0.49 0.27
Alµ3 -243.33596 -243.33570 0.25 -243.33676 -243.33656 0.20 0.86 0.80
Siµ4 -290.84045 -290.84030 0.15 -290.84212 -290.84204 0.09 1.74 1.68
Pµ3 -342.17069 -342.17018 0.50 -342.17293 -342.17243 0.50 2.24 2.24
Sµ2 -398.50143 -398.50105 0.38 -398.50420 -398.50380 0.40 2.75 2.78
Clµ -459.99891 -459.99857 0.34 -460.00098 -460.00073 0.26 2.16 2.08

15



Table S8- The distances between the banquet atoms and the central clamped nuclei computed 
with the optimized and averaged exponents using [6-311+g(d)/4s1p:1s] and [6-
311+g(d)/4s1p:2s2p2d] basis sets. The distance differences between the optimized and 
averaged basis sets have been given in columns with the headline “Diff.” in Angstroms. The 
two last columns contain the distance difference between the two averaged basis sets and 
between the two optimized basis sets in Angstroms.       

 1s 1s 1s 2s2p2d 2s2p2d  2s2p2d Ave. Opt.
 Opt. Ave. Diff. Opt. Ave. Diff. Diff. Diff.

Liµ 1.697 1.688 0.009 1.683 1.686 -0.003 0.002 0.014
Beµ2 1.415 1.416 -0.001 1.401 1.395 0.005 0.021 0.015
Bµ3 1.267 1.273 -0.006 1.240 1.234 0.006 0.039 0.027
Cµ4 1.155 1.161 -0.006 1.119 1.115 0.005 0.047 0.036
Nµ3 1.068 1.073 -0.005 1.017 1.016 0.001 0.057 0.051
Oµ2 1.006 1.010 -0.003 0.938 0.937 0.001 0.073 0.069
Fµ 0.964 0.966 -0.002 0.842 0.848 -0.006 0.118 0.122

    
Naµ 2.000 1.986 0.013 1.987 1.990 -0.002 -0.003 0.012

Mgµ2 1.793 1.789 0.005 1.782 1.784 -0.002 0.005 0.012
Alµ3 1.666 1.664 0.002 1.647 1.648 -0.001 0.016 0.020
Siµ4 1.561 1.562 0.000 1.536 1.536 0.000 0.026 0.026
Pµ3 1.492 1.491 0.001 1.453 1.456 -0.003 0.035 0.038
Sµ2 1.411 1.408 0.003 1.353 1.359 -0.006 0.049 0.058
Clµ 1.349 1.344 0.005 1.276 1.283 -0.007 0.061 0.073
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Table S9- The angles between the two banquet atoms through the central clamped nuclei 
computed with the optimized and averaged exponents using [6-311+g(d)/4s1p:1s] and [6-
311+g(d)/4s1p:2s2p2d] basis sets. The angle differences between the optimized and averaged 
basis sets have been given in columns with the headline “Diff.” in degrees. The two last 
columns contain the angle difference between the two averaged basis sets and between the two 
optimized basis sets in degrees.       

 1s 1s 1s 2s2p2d 2s2p2d  2s2p2d Ave. Opt.
 Opt. Ave. Diff. Opt. Ave. Diff. Diff. Diff.

Nµ3 109.1 108.5 0.6 109.1 108.8 0.3 -0.3 0.0
Oµ2 107.6 107.3 0.3 107.4 107.4 -0.1 -0.1 0.2
Pµ3 95.1 95.3 -0.2 95.0 95.1 0.0 0.2 0.1
Sµ2 93.9 94.1 -0.2 93.9 93.7 0.1 0.4 0.1
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Figure S4- The difference in the mean inter-nuclear distances (of the quantum nucleus and the central atom 
distance) (a) and the difference in total energies (b) of the singly-substituted X= , H, D, T species relative to 
their clamped nucleus counterparts, computed at NEO-HF/[6-311++g(d,p)/4s1p:1s] and HF/6-311++g(d,p) 
levels, respectively.
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