SUPPLEMENTARY INFORMATION

Ternary CBe₄Au₄ Cluster: A 16-Electron System with Quasi-Planar Tetracoordinate Carbon†

Jin-Chang Guo,^{‡ab} Lin-Yan Feng^{‡b} and Hua-Jin Zhai*^b

^aDepartment of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China ^bNanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

E-mail: hj.zhai@sxu.edu.cn

[‡] These authors contributed equally to this work.

Table S1.	Orbital composition analysis of canonical molecular orbitals (CMOs) of the
	global-minimum structure 1 (C_{4v} , ¹ A ₁) of CBe ₄ Au ₄ cluster.

- **Table S2.** Orbital composition analysis of delocalized π CMOs of the C_{4v} CBe₄M₄ (M = K,Au, H, Cl) series of quasi-planar tetracoordinate carbon (quasi-ptC) clusters.
- **Table S3.** Orbital composition analysis of HOMOs of the T_d CBe₄M₄ (M = K, Au, H, Cl)series of tetrahedral carbon (thC) clusters.
- **Figure S1.** Optimized ptC or quasi-ptC global-minimum structures 1-3 of CBe₄Au₄^{0/-/2-} clusters and their three lowest-lying isomers (*n***B**–*n***D**) at the B3LYP/def2-TZVP level. Relative energies are listed in kcal mol⁻¹ at the single-point CCSD(T) level, with zero-point energy (ZPE) corrections at B3LYP.

- **Figure S2.** Wiberg bond indices (WBIs) for 1-3 of CBe₄Au₄^{0/-/2-} clusters from natural bond orbital (NBO) analyses.
- **Figure S3.** Selected optimized salt complexes, $CBe_4Au_4Na^-$ and $CBe_4Au_4Na_2$ at B3LYP/def2-TZVP level, which are based on dianion $CBe_4Au_4^{2-}$ (3) cluster.
- **Figure S4.** WBIs for selected structures of $CAl_4^{0/-/2-}$ clusters (4–8).
- **Figure S5.** Optimized quasi-ptC C_{4v} structures **9–11** of CBe₄M₄ (M = K, H, Cl) and their T_d counterparts at the B3LYP/def2-TZVP level, as compared to those of CBe₄Au₄ and CAl₄. Bond distances are given in angstroms. Natural atomic charges (in |e|) are shown in *italic* in red color. Relative energies are listed in kcal mol⁻¹ at the single-point CCSD(T) level, with zero-point energy (ZPE) corrections at B3LYP.
- **Figure S6.** WBIs for selected structures of CBe_4M_4 (M = K, Au, H, Cl) and CAl₄.
- Figure S7. Nucleus independent chemical shifts (NICSs) for clusters 1–3. NICS(0) is calculated at the center of a triangle. NICS(1), shown in red color, is calculated at 1 Å above the center of a triangle or above the C center.
- **Figure S8.** Canonical molecular orbitals (CMOs) of two typical structures of the 16-electron CAl₄ cluster. (a) C_{2v} (5). (b) T_d (4).

Table S1. Orbital composition analysis of canonical molecular orbitals (CMOs) of the
global-minimum structure $\mathbf{1}$ (C_{4v} , ${}^{1}A_{1}$) of CBe₄Au₄ cluster. Main components are
shown in bold.

Subsystem	СМО	C (%)		Be ₄ (%)		Au ₄ (%)	
		s/p	total	s/p	total	s/d	total
LUMO		0.0/0.0	0.0	23.5/57.3	80.8	0.0/ 19.2	19.2
	LUMO (b ₁)						
Be-Au-Be 3c-2e σ		0.0/0.0	0.0	0.0/ 29.4	29.4	48.0/22.6	70.6
	HOMO -2 (b ₂)						
	🤹 🍫	0.0/ 33.2	33.2	2.7/ 18.5	21.2	40.5 /5.1	45.6
	HOMO-1 (e)						
	•	1.8/0.5	2.3	15.4 /4.5	19.9	32.2/45.6	77.8
	HOMO -3 (a ₁)			_			
2π aromaticity	*	5.2/ 55.2	60.4	2.3/ 23.5	25.8	3.0/ 10.8	13.8
	HOMO (a ₁)						
6 σ aromaticity		0.0/ 31.7	31.7	7.2/ 15.9	23.1	9.1/ 36.1	45.2
	HOMO-19 (e)						
		59.6 /3.1	62.7	14.9/19.3	34.2	1.3/1.8	3.1
	HOMO-20 (a ₁)						

Table S2. Orbital composition analysis of delocalized π CMOs of the C_{4v} CBe₄M₄ (M = K, Au,H, Cl) series of quasi-planar tetracoordinate carbon (quasi-ptC) clusters. Maincomponents are shown in bold.

CBe ₄ M ₄	СМО	C (%)		Be ₄ (%)		M4 (%)	
		s/p	total	s/p	total	s/p,d	total
CBe ₄ K ₄		2.5/ 62.5	65.0	4.8/ 29.1	33.9	1.0/0.1	1.1
	HOMO -3 (a ₁)						
CBe ₄ Au ₄	HOMO $(a_1)^a$	5.2/ 55.2	60.4	2.3/ 23.5	25.8	2.9/ 10.9	13.8
CBe ₄ H ₄	HOMO (a ₁)	4.1/ 48.2	52.3	8.8/ 31.9	40.7	7.0/0.0	7.0
CBe ₄ Cl ₄		3.6/ 59.4	63.0	1.7/ 20.8	22.5	0.0/ 14.5	14.5

^{*a*} HOMO of CBe₄Au₄ is the most delocalized among all species listed, with major components from C, Be₄, and Au₄. Such delocalization, even with formally antibonding contribution from Au₄ (due to energy mismatch between atomic orbitals of Be and Au), helps stabilize the 2π system. It is the extent of spatial delocalization that matters.

CBe ₄ M ₄	CMO^{a}	C (%)		Be ₄ (%)		M ₄ (%)	
		s/p	total	s/p	total	s/p,d	total
CBe ₄ K ₄		0.0/3.8	3.8	31.9/30.9	62.8	32.8 /0.6	33.4
	HOMO (t_2)						
CBe ₄ Au ₄		0.00/4.1	4.1	7.5/ 12.7	20.2	59.1/16.6	75.7
	HOMO (t ₂)						
CBe ₄ H ₄		0.0/ 35.6	35.6	3.1/ 17.4	20.5	43.9 /0.0	43.9
	HOMO $(t_2)^{\nu}$						
CBe ₄ Cl ₄		0.0/ 33.6	33.6	2.3/1.7	4.0	0.0/ 62.4	62.4
	HOMO (t_2)						

Table S3. Orbital composition analysis of HOMOs of the T_d CBe₄M₄ (M = K, Au, H, Cl) series of tetrahedral carbon (thC) clusters. Main components are shown in bold.

^{*a*} HOMO orbitals of T_d CBe₄M₄ (M = K, Au, H, Cl) clusters are triply degenerate, and only one component is depicted and compared in the table.

^b Compared to those of other species, HOMO of T_d CBe₄H₄ has prominent C-Be-H σ conjugation with major orbital components from C, Be₄, and H₄. This effect stabilizes T_d CBe₄H₄ as the global minimum, in contrast to CBe₄Au₄ that has C_{4v} geometry (see Fig. 7 and also footnote in Table S2).

Figure S1. Optimized ptC or quasi-ptC global-minimum structures 1-3 of CBe₄Au₄^{0/-/2-} clusters and their three lowest-lying isomers (*n***B**–*n***D**) at the B3LYP/def2-TZVP level. Relative energies are listed in kcal mol⁻¹ at the single-point CCSD(T) level, with zero-point energy (ZPE) corrections at B3LYP.

3 CBe₄Au₄²⁻ D_{4h} (¹A_{1g}) 0.00

S6

10.40

26.98

5.49

Figure S2. Wiberg bond indices (WBIs) for 1-3 of $CBe_4Au_4^{0/-/2-}$ clusters from natural bond orbital (NBO) analyses.

Figure S3. Selected optimized salt complexes, $CBe_4Au_4Na^-$ and $CBe_4Au_4Na_2$ at B3LYP/def2-TZVP level, which are based on dianion $CBe_4Au_4^{2-}$ (3) cluster.

C_s CBe₄Au₄Na₂

Figure S4. WBIs for selected structures of $CAl_4^{0/-/2-}$ clusters (4–8).

Figure S5. Optimized quasi-ptC C_{4v} structures **9–11** of CBe₄M₄ (M = K, H, Cl) and their T_d counterparts at the B3LYP/def2-TZVP level, as compared to those of CBe₄Au₄ and CAl₄. Bond distances are given in angstroms. Natural atomic charges (in |e|) are shown in *italic* in red color. Relative energies are listed in kcal mol⁻¹ at the single-point CCSD(T) level, with zero-point energy (ZPE) corrections at B3LYP.

Figure S6. WBIs for selected structures of CBe_4M_4 (M = K, Au, H, Cl) and CAl₄.

Figure S7. Nucleus independent chemical shifts (NICSs) for clusters 1–3. NICS(0) is calculated at the center of a triangle. NICS(1), shown in red color, is calculated at 1 Å above the center of a triangle or above the C center.

1 C_{4v} CBe₄Au₄

2 C4v CBe4Au4-

3 *D*_{4*h*} CBe₄Au₄²⁻

Figure S8. Canonical molecular orbitals (CMOs) of two typical structures of the 16-electron CAl₄ cluster. (a) C_{2v} (**5**). (b) T_d (**4**).

