Electronic Supplementary Information

Experimental Section

Materials: NH₄F, KH₂PO₄, K₂HPO₄ and urea were purchased from Beijing Chemical Corp. Co(NO₃)₂·6H₂O was purchased from Aladdin Ltd (China). Ti mesh was purchased from Hangxu filter flagship store. Pt/C (10 wt% Pt) was purchased from Alfa Aesar (China) Chemicals Co. Ltd. RuCl₃·3H₂O and Nafion (5 wt%) were purchased from Sigma-Aldrich Chemical Reagent Co. Ltd. All the reagents were used as received without further purification. The water used throughout all experiments was purified through a Millipore system.

Preparation of Co(OH)F/TM: Co(OH)F was prepared as follows. In a typical synthesis, $Co(NO_3)_2 \cdot 6H_2O$ (1 mmol), NH_4F (2 mmol) and urea (5 mmol) were dissolved in 25 mL water under vigorous stirring for 20 min. Then the solution was transferred into a Teflon-lined stainless autoclave (30 mL), and a piece of Ti mesh (3 cm × 2 cm) was immersed into the autoclave contained solution. The autoclave was sealed and maintained at 105 °C for 5 h in an electric oven. After the autoclave cooled down naturally, the resulting Co(OH)F/TM was taken out and washed with ultrapure water and dried at 60 °C.

Preparation of Co₂N/TM: To prepare Co₂N/TM, Co(OH)F/TM was placed in the furnace and heated to 420 °C for 2 h with a heating speed of 5 °C min⁻¹ under a flowing NH₃ atmosphere. The system was allowed to cool down to room temperature naturally still under a flowing NH₃ atmosphere. Finally, the black Co₂N/Ti was collected for further characterization. The loading for Co₂N on Ti mesh was determined to be 1.08 mg cm⁻².

Preparation of Co-Pi/TM: The Co-Pi/TM was formed with a rapid electrochemical transformation. Co_2N /TM electrode (0.5×0.5 cm) was used as the working electrode, Pt wire as the auxiliary electrode and SCE electrode as the reference electrode. the asprepared Co_2N /TM was activated for 500 cycles by cyclic voltammetry with the potential ranges from 0.8 V to 1.2 V vs. SCE in 0.1 M PBS at pH 7.4.

Preparation of RuO₂: RuO₂ was prepared according to previous report.¹ Briefly,

2.61 g RuCl₃·3H₂O and 1.0 mL NaOH (1.0 M) were added into 100 mL distilled water and stirred for 45 min at 100 °C. Then the solution was centrifuged for 10 minutes and filtered. The precipitate was collected and washed with water several times. Finally, the product was dried at 80 °C overnight and then annealed at 300 °C in air for 3 h.

Characterizations: XRD data were collected on a Rigaku X-ray diffractometer equipped with a Cu Kα radiation source. Scanning electron microscopy (SEM) measurements were performed on a Hitachi S-4800 field emission scanning electron microscope at an accelerating voltage of 20 kV. Transmission electron microscopy (TEM) measurements were carried out on a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. ICP-MS analysis was performed on ThermoScientific iCAP6300.

Electrochemical measurements: Electrochemical measurements were performed with a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) in a standard three-electrode system, using a Co-Pi/TM as the working electrode, a Pt wire as the counter electrode and a SCE as the reference electrode. The potentials reported in this work were calibrated to RHE, using the following equation: E (RHE) = E (SCE) + 0.242 + 0.059 × pH V. Polarization curves were obtained using linear sweep voltammetry with a scan rate of 2 mV s⁻¹. All experiments were carried out at room temperature (~25 °C).

Computational Methods: All the density-functional theory (DFT) calculations in this study were performed using the Vienna *ab initio* simulation package (VASP).²⁻⁴ We used the PBE functional for the exchange-correlation energy⁵ and projector augmented wave (PAW) potentials.^{6,7} The kinetic energy cutoff in the calculation was set to 450 eV. The ionic relaxation was performed until the force on each atom is less than 0.03 eV/Å and convergence criteria of total energy were set to 10⁻⁴ eV. The $3\times3\times1$ k-points meshes were sampled based on the Monkhorst-Pack method. ⁸ The Hubbard U parameter (GGA+U) with U = 4 eV was used to calculate the electron

correlation within the Co ions. The simulations performed were based on the fivelayer thick $Co_2N(111)$ surface and a Co-Pi layer model structure with H atoms to saturate the dangling bonds of O atoms.⁹ To minimize the undesired interactions between images, a vacuum of at least 15 Å was considered along the z axis.

Previous studies have shown that the OER activity is strongly correlated with the free energy of O*, OH* and OOH* binding to the electrocatalysts surface. The four step OER mechanism is proposed as:

$$2H_2O + * \rightarrow OH^* + H_2O + e^- + H^+$$
 (1)

$$OH^* + H_2O \to O^* + H_2O + e^- + H^+$$
 (2)

$$O^* + H_2O \rightarrow OOH^* + e^- + H^+$$
(3)

$$OOH^* \to O_2 + e^- + H^+ \tag{4}$$

The free energy (ΔG_i) for O*, OH* and OOH* adsorption on Co-Pi and surfaces was calculated as follows:

$$\Delta G_i = \Delta E_i + \Delta E_{ZPE} - T\Delta S \tag{5}$$

where ΔE_i is the reaction energy for each elementary step, ΔE_{ZPE} is the zero-point energy change and ΔS is the entropy change. The theoretical overpotential can be defined as:

$$\eta = \max[\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4]/e - 1.23 [V]$$
(6)

Determination of Faradaic efficiency (FE): The generated gas was confirmed by gas chromatography (GC) analysis and measured quantitatively using a calibrated pressure sensor to monitor the change of pressure in the anode and cathode compartment of a H-type electrolytic cell. The FE was calculated by comparing the amount of experimentally quantified gas with theoretically calculated (assuming 100% FE). GC analysis was carried out on GC-2014C with thermal conductivity detector and nitrogen carrier gas. Pressure data during electrolysis were recorded using a CEM DT-8890 Differential Air Pressure Gauge Manometer Data Logger Meter Tester with a sampling interval of 1 point per second.

Fig. S1. XPS spectra of Co_2N in (a) Co 2p, and (b) N 1s regions.

Fig. S2. Time-dependent current density curve of Pt/C under static overpotential in1.0MPBS.

Catalyst	j (mA cm ⁻²)	η (mV)	Electrolyte	Ref.
Co ₂ N/TM	2	142		Thia
	5	246	1.0 M PBS	1 IIIS work
	10	290		WOLK
WO ₃ NAs/CC	2	186		10
	10	302	1.0 M PBS	
CoO/CoSe ₂	10	337	0.5 M PBS	11
H ₂ -CoCat/FTO	2	385	0.5 M PBS	12
CuMoS ₄ /FTO	2	210	0.1 M PBS	13
Cu-EA	2	270	0.1 M PBS	14
Co-NRCNTs	2	380		15
	10	540	0.1 M PBS	
Co-Mo-S film	1.04	200	PBS	16
Mo ₂ C	1	200	PBS	17
CoP/CC	2	65		18
	10	106	1.0 M PBS	

Table S1. Comparison of HER performance for Co_2N/TM with other non-noble-metal electrocatalysts in neutral media.

Fig. S3. XRD pattern for Co-Pi/TM.

Fig. S4. Energy-dispersive X-ray (EDX) elemental mapping analysis of Co-Pi.

Fig. S5. XPS spectra of Co-Pi in (a) Co 2p, (b) P 2p, and (c) O 1s regions.

Catalyst	j (mA cm ⁻²)	η (mV)	Electrolyte (PBS)	Ref.	
Co-Pi/TM	5	302	0.1 M		
	10	430	0.1 M	This work	
	10	413	0.3 M	T HIS WORK	
	10	300	1.0 M		
Co-Pi/TM	10	450	0.1 M	19	
Co-Pi/ITO	1	410	0.1 M	20	
Co-Pi/FTO	0.43	420	0.1 M	21	
Co-Pi/ITO	1	483	0.1 M	22	
Co-Pi film	0.63	483	0.1 M	23	
CoCat	1	813	0.1 M	24	
NGCO	1	410	0.1 M	25	
CoPi/GO	0.23	780	0.1 M	26	
Fe-based film	1	480	0.1 M	27	
Ni-Gly	1	480	0.5 M	28	
Mn ₅ O ₈	5	580	0.3 M	29	
MnO _x	1	580	0.1 M	30	
Li ₂ Co ₂ O ₄	1	545	0.1 M	31	
Co-Ni LDH	1	490	0.1 M	32	
$Co(PO_3)_2$	10	590	0.1 M	33	
Co ₃ O ₄ /MWNTs	1	400	0.1 M	34	
Co ₃ S ₄	3	620	0.1 M	35	
Sub-MnO _x	1	420	0.3 M	36	
$Mn_3(PO_4)_2$	0.32	680	0.5 M	37	
LiMnP ₂ O ₇	0.5	680	0.5 M	38	
Cu-doped CCO	1	653	0.1 M	39	
Co-W	1	420	0.05 M	40	
Co(OH) ₂	1	710	0.1 M	41	

Table S2. Comparison of OER performance for Co-Pi/TM with other non-noble

 metal electrocatalysts in neutral media.

Fig. S6. LSV curves of Co-Pi/TM for OER in 1.0 M PBS with varied pH.

Fig. S7. Time-dependent current density curve of RuO₂/TM under static overpotential in 1.0 M PBS.

Fig. S8. Multi-current process of Co-Pi/TM in 1.0 M PBS. The current density started at 10 mA cm⁻² and ended at 100 mA cm⁻², with an increment of about 10 mA cm⁻² per 500 s without *iR* correction.

Movie S1. Overall water electrolysis at the voltage of 1.78 V employing Co₂N/TM as cathode and Co-Pi/TM as anode.

Fig. S9. Polarization curve of Co_2N/CC for (a) HER and (b) OER. (c) Polarization curve of $Co_2N/CC||Co-Pi/CC$ for full water splitting with a scan rate of 2 mV s⁻¹. All experiments were carried out in in 1.0 M PBS.

Fig. S10. The amount of gas theoretically calculated and experimentally measured vs. time for overall water splitting of $Co_2N/TM||Co-Pi/TM$.

References

J. C. Cruz, V. Baglio, S. Siracusano, V. Antonucci, A. S. Aricò, R. Ornelas, L.

Ortiz-Frade, G. Osorio-Monreal, S. M. Durón-Torres and L.G. Arriaga, *Int. J. Electrochem. Sci.*, 2011, **6**, 6607-6619.

- 2 G. Kresse and J. Furthmuller, Comp. Mater. Sci., 1996, 6, 15-50.
- 3 G. Kresse and J. Furthmuller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 4 G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251-14269.
- 5 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, 78, 1396-1396.
- 6 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 7 P. E. Blochl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 8 H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- A. Riou, Y. Cudennec and Y. Gerault, *Acta Crystallographica C*, 1989, 45, 1412-1413.
- J. Shi, Z. Pu, Q. Liu, A. M. Asiri, J. Hu and X. Sun, *Electrochimica Acta*, 2015, 154, 345-351.
- 11 K. Li, J. Zhang, R. Wu, Y. Yu and B. Zhang, *Adv. Sci.*, 2016, **3**, 1500426.
- S. Cobo1, J. Heidkamp, P. A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave and V. Artero, *Nat. Mater.*, 2012, **11**, 802-807.
- P. D. Tran, M. Nguyen, S. S. Pramana, A. Bhattacharjee, S. Y. Chiam, J. Fize, M. J. Field, V. Artero, L. H. Wong, J. Loo and J. Barber, *Energy Environ. Sci.*, 2012, 5, 8912-8916.
- 14 X. Liu, S. Cui, Z. Sun and P. Du, *Chem. Commun.*, 2015, **51**, 12954-12957.
- 15 X. Zou, X.Huang, A. Goswami, R. Silva, B. R. Sathe, Elis 'ka Mikmekov and Tewodros Asefa, *Angew. Chem., Int. Ed.*, 2014, **53**, 4372-4376.
- D. Merki, H. Vrubel, L. Rovelli, S Fierro and X. Hu, *Chem. Sci.*, 2012, 3, 2515-2525.
- 17 E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis and R. E. Schaak, Angew. Chem., Int. Ed., 2012, 51, 12703-12706.
- 18 J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 19 L. Xie, R. Zhang, L. Cui, D. Liu, S. Hao, Y. Ma, G. Du, A. M. Asiri and X. Sun, Angew. Chem., Int. Ed., 2017, 129, 1084-1088.

- 20 M. W. Kanan and D. G. Nocera, *Science*, 2008, **312**, 1072-1075.
- E. R. Young, D. G. Nocera and V. Bulović, *Energy Environ. Sci.*, 2010, 3, 1726-1728.
- 22 Y. Surendranath, M. Dinca and D. G. Nocera, J. Am. Chem. Soc., 2009, 131, 2615-2620.
- 23 M. W. Kanan, J. Yano, Y. Surendranath, M. Dincă, V. K. Yachandra and D. G. Nocera, J. Am. Chem. Soc., 2010, 132, 13692-3701.
- D. González-Flores, I. Sánchez, I. Zaharieva, K. Klingan, J. Heidkamp, P. Chernev, P. W. Menezes, M. Driess, H. Dau and M. L. Montero, *Angew. Chem., Int. Ed.*, 2015, 54, 2472-2476.
- A. Vasileff, S. Chen and S. Qiao, Nanoscale Horiz., 2016, 1, 41-44.
- 26 J. Tian, H. Li, A. M. Asiri, A. O. Al-Youbi and X. Sun, *Small*, 2013, 9, 2709-2714.
- Y. Wu, M. Chen, Y. Han, H. Luo, X. Su, M. Zhang, X. Lin, J. Sun, L. Wang, L.
 Deng, W. Zhang and R. Cao, *Angew. Chem., Int. Ed.*, 2015, 54, 4870-4875.
- 28 D. Wang, G. Ghirlanda and J. P. Allen, J. Am. Chem. Soc., 2014, 136, 10198-10201.
- 29 D. Jeong, K. Jin, S. E. Jerng, H. Seo, D. Kim, S. H. Nahm, S. H. Kim and K. T. Nam, ACS Catal., 2015, 5, 4624-4628.
- 30 I. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer and H. Dau, *Energy Environ. Sci.*, 2012, 5, 7081-7089.
- G. P. Gardner, Y. B. Go, D. M. Robinson, P. F. Smith, J. Hadermann, A. Abakumov, M. Greenblatt and G. C. Dismukes, *Angew. Chem., Int. Ed.*, 2012, 51, 1616-1619.
- 32 Y. Zhang, B. Cui, C. Zhao, H. Lin and J. Li, *Phys. Chem. Chem. Phys.*, 2013, 15, 7363-7369.
- 33 H. S. Ahn and T. D. Tilley, *Adv. Funct. Mater.*, 2013, **23**, 227-233.
- J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng and Y. Xie, *Nano Res.*, 2012, 5, 521-530.
- 35 Y. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai, P. Huang, W. Tong, Y. Zou and Y. Xie,

Angew. Chem., Int. Ed., 2015, 54, 11231-11235.

- K. Jin, A. Chu, J. Park, D. Jeong, S. E. Jerng, U. Sim, H. Y. Jeong, C. W. Lee, Y.
 S. Park, K. D. Yang, G. K. Pradhan, D. Kim, N. E. Sung, S. H. Kim and K. T.
 Nam, *Sci. Rep.*, 2015, 5, 10279.
- K. Jin, J. Park, J. Lee, K. D. Yang, G. K. Pradhan, U. Sim, D. Jeong, H. L. Jang,
 S. Park, D. Kim, N. E. Sung, S. H. Kim, S. Han and K. T. Nam, *J. Am. Chem. Soc.*, 2014, **136**, 7435-7443.
- J. Park, H. Kim, K. Jin, B. J. Lee, Y. S. Park, H. Kim, I. Park, K. D. Yang, H. Y. Jeong, J. Kim, K. T. Hong, H. W. Jang, K. Kang and K. T. Nam, *J. Am. Chem. Soc.*, 2014, **136**, 4201-4211.
- 39 Y. Zhang, B. Cui, O. Derr, Z. Yao, Z. Qin, X. Deng, J. Li and H. Lin, *Nanoscale*, 2014, **6**, 3376-3383.
- 40 B. Zhang, X. Wu, F. Li, F. Yu, Y. Wang and L. Sun, *Chem. Asian J.*, 2015, **10**, 2228-2233.
- 41 Y. Zhang, B. Cui, Z. Qin, H. Lin and J. Li, *Nanoscale*, 2013, **5**, 6826-6833.