## **Electronic Supplementary Information**

# Phosphine-functionalized NHC Ni(II) and Ni(0) complexes: synthesis, characterization and catalytic properties

## Silvia G. Rull,<sup>†</sup> Raquel J. Rama,<sup>‡</sup> Eleuterio Álvarez,<sup>§</sup> Manuel R. Fructos,<sup>\*,†</sup> Tomás R. Belderrain<sup>\*,†</sup> and M. Carmen Nicasio<sup>\*,‡</sup>

<sup>†</sup>Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007-Huelva, Spain <sup>‡</sup>Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071-Sevilla, Spain <sup>§</sup> Instituto de Investigaciones Químicas Isla de la Cartuja, CSIC-Universidad de Sevilla, Avenida de Américo Vespucio 49, 41092-Sevilla, Spain

trodri@dqcm.uhu.es; mnicasio@us.es;

#### **Table of Contents**

| General Methods and Experimental Procedures                         | S1-S9   |
|---------------------------------------------------------------------|---------|
| NMR Spectra of Compounds                                            | S10-S16 |
| X-ray Crystallographic Collection Parameters and Data for <b>2b</b> | S17-S30 |

**General Methods**. All reactions and manipulations were carried out under a nitrogen atmosphere by using standard Schlenk techniques or under nitrogen atmosphere in an Mbraun glovebox. All substrates were purchased from Aldrich and used without further purification. Solvents were distilled and degassed before use. The Ni(cod)<sub>2</sub>,<sup>1</sup> [Ni(allyl)Cl]<sub>2</sub><sup>2</sup> and the phosphine-functionalized NHCPPh<sub>2</sub> ligands<sup>3</sup> were prepared according to literature methods. NMR spectra were recorded on Agilent 400 MR or Agilent 500 DD2. FTIR spectra were recorded on a Nicolet IR200 FTIR spectrometer. <sup>1</sup>H and <sup>13</sup>C NMR shifts were measured relative to deuterated solvents peaks but are reported relative to tetramethylsilane. Elemental analyses were performed on a PerkinElmer Series II CHNS/O Analyzer 2400.

Synthesis of complexes [Ni(ArNHCPPh<sub>2</sub>)(allyl)]Cl (Ar = Mes (1a), (2,6-*i*Pr-C<sub>6</sub>H<sub>3</sub> (1b)). The imidazolium salt (1.5 mmol) and potassium bis(trimethylsilyl)amide (0.3 g, 1.5 mmol) were stirred in THF (10 mL) at -30 °C for 2 hours. A solution of [Ni(allyl)Cl]<sub>2</sub> (0.2 g, 0.75 mmol) in THF (5 mL) cooled at -30 °C was added to the former suspension, and the mixture was allowed to reach room temperature. The solvent was removed under vacuum and the residue was dissolved in dichloromethane and filtered through a Celite pad. The solution was taken to dryness and the solid washed with diethyl ether and dried under vacuum. Recrystallization from toluene afforded the complexes as dark orange solids. Yields: 0.72 g, 90 % for **1a**; 0.81 g, 87 % for **1b**. Data for **1a**: <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>, -30 °C) δ 8.13 (s, 1H, CH<sub>imid</sub>), 7.56-7.41 (m, 10 H, CH<sub>Ar</sub>), 7.03 (s, 1 H, CH<sub>imid</sub>), 7.01 (s, 1 H, CH<sub>Ar</sub>), 6.95 (s, 1 H, CH<sub>Ar</sub>), 5.11 (m, 1 H, NCH<sub>2</sub>), 4.99 (m, 1 H, H<sub>meso</sub>), 4.48 (m, 1 H, NCH<sub>2</sub>), 3.53 (m, 1 H, Hsyn), 3.45 (m, 1 H, Hsyn), 2.65 (m, 1 H, PCH<sub>2</sub>), 2.53 (m, 1 H, PCH<sub>2</sub>), 2.32 (s, 3 H, CH<sub>3</sub>), 1.94 (s, 3 H, CH<sub>3</sub>), 1.92 (s, 3H, CH<sub>3</sub>), 1.88-1.80 (m, 2 H, H<sub>anti</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>, -30 °C)  $\delta$  171.0 (d,  $J_{CP} = 20 \text{ Hz}$ , NCN), 139.6 ( $C_{Ar}$ ), 136.3 ( $C_{Ar}$ ), 133.4 (d,  $J_{CP} = 13 \text{ Hz}$ ,  $C_{Ar}$ ), 131.8 ( $C_{Ar}$ ), 131.6 ( $C_{Ar}$ ), 131.1 ( $C_{Ar}$ ), 129.5 ( $C_{Ar}$ ), 129.5 ( $C_{Ar}$ ), 129.4 ( $C_{Ar}$ ), 129.2 (d,  $J_{CP} = 3$ Hz,  $C_{Ar}$ ), 125.0 ( $C_{Ar}$ ), 122.6 ( $C_{Ar}$ ), 115.5 ( $CH_{allyl}$ ), 67.1 (d,  $J_{CP} = 29$  Hz,  $CH_{2allyl}$ ), 63.1  $(CH_{2allyl})$ , 46.6 (d,  $J_{CP} = 3$  Hz, NCH<sub>2</sub>), 26.7 (d,  $J_{CP} = 26$  Hz, PCH<sub>2</sub>), 21.2 (CH<sub>3Ar</sub>), 18.4 (CH<sub>3Ar</sub>), 18.2 (CH<sub>3Ar</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 20.6. Anal. Calcd for C<sub>29</sub>H<sub>32</sub>N<sub>2</sub>PNiCl: C, 65.26; H, 6.04; N, 5.25. Found: C, 64.74; H, 5.96; N, 5.21. Data for **1b**: <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>, -50 °C) δ 8.31 (s, 1 H, CH<sub>imid</sub>), 7.59-7.41 (m, 11 H, CH<sub>Ar</sub>), 7.31-7.14 (m, 2 H, CH<sub>Ar</sub>), 7.10 (s, 1 H, CH<sub>imid</sub>), 5.16 (m, 1 H, NCH<sub>2</sub>), 4.99 (m, 1 H, H<sub>meso</sub>), 4.38 (m, 1 H, NCH<sub>2</sub>), 3.53 (m, 1 H, H<sub>syn</sub>), 3.41 (m, 1 H, H<sub>syn</sub>), 2.66 (m, 1 H, PCH<sub>2</sub>), 2.53-2.41 (m, 3 H, CH-*i*Pr and PCH<sub>2</sub>), 1.76 (m, 1 H, H<sub>anti</sub>), 1.69 (m, 1 H, H<sub>anti</sub>), 1.19 (d, 3 H,  ${}^{3}J_{HH} = 6.5$ Hz,  $CH_3-iPr$ ), 1.05 (d, 3 H,  ${}^{3}J_{HH} = 6.9$  Hz,  $CH_3-iPr$ ), 1.01 (d, 3 H,  ${}^{3}J_{HH} = 6.5$  Hz,  $CH_3-iPr$ ), 0.82 (d, 3 H,  ${}^{3}J_{\text{HH}} = 6.9$  Hz,  $CH_{3}$ -*i*Pr).  ${}^{13}C\{1\text{H}\}$  NMR (125 MHz,  $CD_{2}Cl_{2}$ , -70 °C)  $\delta$  172.5, (d,  $J_{\text{CP}} = 24$  Hz, NCN), 145.1 ( $C_{\text{Ar}}$ ), 144.6 ( $C_{\text{Ar}}$ ), 137.7 ( $C_{\text{Ar}}$ ), 135.5 ( $C_{\text{Ar}}$ ), 133.1 (d,  $J_{\text{CP}} = 13$  Hz,  $C_{\text{Ar}}$ ), 131.5 ( $C_{\text{Ar}}$ ), 131.0 ( $C_{\text{Ar}}$ ), 130.9 ( $C_{\text{Ar}}$ ), 130.6 ( $C_{\text{Ar}}$ ), 129.9 ( $C_{\text{Ar}}$ ), 129.1-128.9 (m,  $C_{\text{Ar}}$ ), 128.7 ( $C_{\text{Ar}}$ ), 127.9 ( $C_{\text{Ar}}$ ), 124.9 ( $C_{\text{Ar}}$ ), 124.5 ( $C_{\text{Ar}}$ ), 123.8 ( $C_{\text{Ar}}$ ), 123.6 (d,  $J_{\text{CP}} = 16$  Hz,  $C_{\text{Ar}}$ ), 114.7 ( $CH_{\text{allyl}}$ ), 66.4 (d,  $J_{\text{CP}} = 22$  Hz,  $CH_{2\text{allyl}}$ ), 62.8 ( $CH_{2\text{allyl}}$ ), 45.8 (NCH<sub>2</sub>), 28.0 (CH-*i*Pr), 27.9 (CH-*i*Pr), 26.2 (d,  $J_{\text{CP}} = 27$  Hz, PCH<sub>2</sub>), 25.6 ( $CH_{3}$ -*i*Pr), 22.9 ( $CH_{3}$ -*i*Pr), 22.2 ( $CH_{3}$ -*i*Pr), 21.1 ( $CH_{3}$ -*i*Pr).  ${}^{31}P\{{}^{1}\text{H}\}$  NMR (202 MHz,  $CD_{2}Cl_{2}$ )  $\delta$  22.9. Anal. Calcd for  $C_{32}H_{38}N_{2}PNiCl^{10}.5C_{7}H_{8}$ : C, 68.57; H, 6.81; N, 4.50. Found: C, 68.94; H, 6.79; N, 4.25.

Synthesis of  $[Ni(ArNHCPPh_2)(allyl)]SbF_6$  (Ar = 2,6-*i*Pr-C<sub>6</sub>H<sub>3</sub> (1b-SbF<sub>6</sub>)). One equivalent of  $AgSbF_6$  (0.123 g, 0.35 mmol) was added to a solution of complex **1b** (0.2 g, 0.35 mmol) in dichloromethane (5 mL). The reaction stirred for 10 min and then filtered through a pad of Celite. The solvent was removed under reduce pressure to afford a pale yellow solid in quantitative yield. .Data for 1b-SbF6: <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 7.63-7.44 (m, 10 H, CH<sub>Ar</sub>), 7.36-7.28 (m, 2 H, CH<sub>Ar</sub>), 7.16 (d, 1 H,  ${}^{3}J_{HH} = 1.8$  Hz, CH<sub>imid</sub>), 5.00 (m, 1 H, H<sub>meso</sub>), 4.65 (m, 1 H, NCH<sub>2</sub>), 4.35 (m, 1 H, NCH<sub>2</sub>), 3.59 (m, 1 H, H<sub>syn</sub>), 3.54 (m, 1 H, H<sub>syn</sub>), 2.68 (m, 1 H, PCH<sub>2</sub>), 2.57-2.44 (m, 3 H, CH-iPr and PCH<sub>2</sub>), 1.90-1.85 (m, 2 H, H<sub>anti</sub>), 1.21 (d, 3 H,  ${}^{3}J_{HH} = 6.8$  Hz, CH<sub>3</sub>-*i*Pr), 1.09 (d, 3 H,  ${}^{3}J_{HH} = 6.8$  Hz, CH<sub>3</sub>-*i*Pr), 1.07 (d, 3 H,  ${}^{3}J_{HH} = 6.8$  Hz, CH<sub>3</sub>-*i*Pr), 0,95 (d, 3 H,  ${}^{3}J_{HH} = 6.8$  Hz, CH<sub>3</sub>-*i*Pr).  ${}^{13}C{}^{1}H{}$  NMR (125 MHz,  $CD_2Cl_2$ )  $\delta$  172.9, (d,  $J_{CP}$  = 19 Hz, NCN), 145.6 ( $C_{Ar}$ ), 145.1 ( $C_{Ar}$ ), 136.0 ( $C_{Ar}$ ), 132.9 (d,  $J_{CP}$  = 14 Hz,  $C_{Ar}$ ), 131.9 (d,  $J_{CP} = 3$  Hz,  $C_{Ar}$ ), 131.5 (d,  $J_{CP} = 11$  Hz,  $C_{Ar}$ ), 131.3 (d,  $J_{CP} = 3$  Hz,  $C_{Ar}$ ), 130.6 ( $C_{Ar}$ ), 129.6, (d,  $J_{CP} = 2$  Hz,  $C_{Ar}$ ), 129.5 (d,  $J_{CP} = 2$  Hz,  $C_{Ar}$ ), 124.9 ( $C_{Ar}$ ), 124.3 (d,  $J_{CP} = 6$  Hz,  $C_{Ar}$ ), 123.6 ( $C_{Ar}$ ), 115.3 ( $CH_{allyl}$ ), 67.6 (d,  $J_{CP} = 18$  Hz,  $CH_{2allyl}$ ), 63.2 (d,  $J_{CP} = 18$  Hz,  $CH_{2allyl$ 5 Hz, CH<sub>2allyl</sub>), 47.1 (d, J<sub>CP</sub> = 4 Hz, NCH<sub>2</sub>), 28.5 (d, J<sub>CP</sub> = 18 Hz, PCH<sub>2</sub>), 27.0 (CH-*i*Pr), 26.8 (*CH-iPr*), 25.4 (*CH*<sub>3</sub>-*iPr*), 24.9 (*CH*<sub>3</sub>-*iPr*), 22.9 (*CH*<sub>3</sub>-*iPr*), 22.6 (*CH*<sub>3</sub>-*iPr*). <sup>31</sup>P{<sup>1</sup>H} NMR (202) MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 21.3. Anal. Calcd for C<sub>32</sub>H<sub>38</sub>F<sub>6</sub>N<sub>2</sub>PNiSb•0.4CH<sub>2</sub>Cl<sub>2</sub>: C, 48.04; H, 4.83; N, 3.46. Found: C, 47.83; H, 4.83; N, 3.46.

Synthesis of complexes [Ni(ArNHCPPh<sub>2</sub>)(alkene)] (Ar =  $(2,6-iPr-C_6H_3;$  alkene = styrene (2a), diethyl fumarate, (2b)). The imidazolium salt (0.48g, 1 mmol), potassium bis(trimethylsilyl)amide (0.2 g, 1 mmol), Ni(cod)<sub>2</sub> (0.27 g, 1 mmol) and 3 equivalents of the corresponding alkene were dissolved in THF (5 mL). The mixture was stirred for 90 minutes at room temperature and then, it was filtered through a pad of Celite. The volatiles were removed under reduced pressure. The yellow-orange solid was washed with hexane to give the desired product. Yield: 0.54 g, 90 % for **2a**; 0.57 g, 85 % for **2b**. Data for **2a**: <sup>1</sup>H NMR

(500 MHz,  $C_6D_6$ )  $\delta$  7.60 (t, 2 H,  $J_{HH} = 8.5$  Hz,  $CH_{Ar}$ ), 7.27-7.14 (m, 3 H,  $CH_{Ar}$ ), 7.10-6.85 (m, 13 H, CHAr), 6.41 (s, 1 H, CHimid), 6.13 (s, 1 H, CHimid), 3.78-3.68 (m, 1 H, NCH<sub>2</sub> and  $CH_{olefin}$ ), 3.39 (m, 1 H, NCH<sub>2</sub>), 2.95 (sept, 1 H,  ${}^{3}J_{HH} = 7$  Hz, CH-*i*Pr), 2.66 (sept, 1 H,  ${}^{3}J_{HH} =$ 7 Hz, CH-iPr), 2.15 (m, 1H, CHolefin), 1.94-1.85 (m, 2 H, PCH2 and CHolefin), 1.57 (m, 1 H, PCH<sub>2</sub>), 1.30 (d, 3 H,  ${}^{3}J_{HH} = 7$  Hz, CH<sub>3</sub>-*i*Pr), 1.11 (d, 3 H,  ${}^{3}J_{HH} = 7$  Hz, CH<sub>3</sub>-*i*Pr), 1.05 (d, 3 H,  ${}^{3}J_{\text{HH}} = 7 \text{ Hz}, \text{ }CH_{3}-i\text{Pr}), 0.89 \text{ (d, 3 H, }{}^{3}J_{\text{HH}} = 7 \text{ Hz}, \text{ }CH_{3}-i\text{Pr}). {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR (125 MHz, C_{6}\text{D}_{6})}$ δ 195.5 (d,  $J_{CP}$  = 8 Hz, NCN), 150.3 ( $C_{Ar}$ ), 146.3 ( $C_{Ar}$ ), 145.8 ( $C_{Ar}$ ), 139.6 (d,  $J_{CP}$  = 23 Hz,  $C_{Ar}$ ), 138.1 ( $C_{Ar}$ ), 135.9 (d,  $J_{CP} = 25$  Hz,  $C_{Ar}$ ), 133.3 (d,  $J_{CP} = 15$  Hz,  $C_{Ar}$ ), 131.7 (d,  $J_{CP} = 13$ Hz, CAr), 129.1 (CAr), 128.3 (CAr), 128.0 (CAr), 127.6 (CAr), 123.6 (CAr), 123.3 (CAr), 123.2 (CAr), 121.0 (CAr), 120.1 (CAr), 119.8 (CAr), 52.2 (CH<sub>20lefin</sub>), 47.0 (d, J<sub>CP</sub> = 8 Hz, NCH<sub>2</sub>), 33.4 (d, J<sub>CP</sub> = 24 Hz, CH<sub>olefin</sub>), 28.4 (CH-*i*Pr), 28.3 (CH-*i*Pr), 27.7 (d, J<sub>CP</sub> = 23 Hz, PCH<sub>2</sub>), 25.4  $(CH_3-iPr)$ , 24.6  $(CH_3-iPr)$ , 23.7  $(CH_3-iPr)$ , 22.6  $(CH_3-iPr)$ . <sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ 15.2. Data for **2b**: <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  8.07 (t, 2 H, <sup>3</sup>J<sub>HH</sub> = 8.7 Hz, CH<sub>Ar</sub>), 7.49 (t, 2 H,  ${}^{3}J_{HH} = 8.7$  Hz,  $CH_{Ar}$ ), 7.24-7.12 (m, 7 H,  $CH_{Ar}$ ), 7.08-7.01 (m, 2 H,  $CH_{Ar}$ ), 6.46 (s, 1H, CH<sub>imid</sub>), 6.09 (br. s, 1 H, CH<sub>imid</sub>), 4.05 (dq, 1 H,  ${}^{2}J_{HH} = 11$  Hz,  ${}^{3}J_{HH} = 7$  Hz, COOCH<sub>2</sub>CH<sub>3</sub>), 3.97 (dq, 1 H,  ${}^{2}J_{HH} = 11$  Hz,  ${}^{3}J_{HH} = 7$  Hz, COOCH<sub>2</sub>CH<sub>3</sub>), 3.90-3.81 (m, 2 H, COOCH<sub>2</sub>CH<sub>3</sub>) and NCH<sub>2</sub>), 3.71 (dq, 1 H,  ${}^{2}J_{HH} = 11$  Hz,  ${}^{3}J_{HH} = 7$  Hz, COOCH<sub>2</sub>CH<sub>3</sub>), 3.54 (m, 1 H, CH<sub>olefin</sub>), 3.33-3.21 (m, 2 H, CH<sub>olefin</sub> and NCH<sub>2</sub>), 3.09 (sept, 1 H,  ${}^{3}J_{HH} = 6.5$  Hz, CH-*i*Pr), 3.08 (sept, 1 H,  ${}^{3}J_{HH} = 6.5$  Hz, CH-*i*Pr), 1.72 (m, 1 H, PCH<sub>2</sub>), 1.60 (d, 3 H,  ${}^{3}J_{HH} = 6.5$  Hz, CH<sub>3</sub>-*i*Pr), 1.39 (m, 1 H, PCH<sub>2</sub>), 1.12 (d, 3 H,  ${}^{3}J_{HH} = 6.5$  Hz, CH<sub>3</sub>-*i*Pr), 0.99 (d, 3 H,  ${}^{3}J_{HH} = 6.5$  Hz, CH<sub>3</sub>-*i*Pr), 0.97 (t, 3 H,  ${}^{3}J_{HH} = 7$  Hz, COOCH<sub>2</sub>CH<sub>3</sub>), 0.84 (t, 3 H,  ${}^{3}J_{HH} = 7$  Hz, COOCH<sub>2</sub>CH<sub>3</sub>), 0.70 (d, 3H,  ${}^{3}J_{\text{HH}} = 7$  Hz, CH<sub>3</sub>-*i*Pr).  ${}^{13}C{}^{1}H{}$  NMR (125 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  192.0 (NCN), 173.8 (d,  $J_{\text{CP}} =$ 5 Hz, C=O), 145.9 ( $C_{Ar}$ ), 144.9 ( $C_{Ar}$ ), 137.4 ( $C_{Ar}$ ), 137.2 ( $C_{Ar}$ ), 136.9 ( $C_{Ar}$ ), 135.1 (d,  $J_{CP}$  = 31 Hz,  $C_{Ar}$ ), 133.3 (d,  $J_{CP} = 14$  Hz,  $C_{Ar}$ ), 132.2 (d,  $J_{CP} = 13$  Hz,  $C_{Ar}$ ), 129.4 ( $C_{Ar}$ ), 129.1 ( $C_{Ar}$ ), 128.9 ( $C_{Ar}$ ), 128.4 (d,  $J_{CP} = 9$  Hz,  $C_{Ar}$ ), 128.1 (d,  $J_{CP} = 9$  Hz,  $C_{Ar}$ ), 128.0 ( $C_{Ar}$ ), 127.2 ( $C_{Ar}$ ), 123.8 (d, *J*<sub>CP</sub> = 5 Hz, *C*<sub>Ar</sub>), 123.3 (*C*<sub>Ar</sub>), 119.8 (*C*<sub>Ar</sub>), 57.9 (COOCH<sub>2</sub>CH<sub>3</sub>), 57.8 (*C*H<sub>olefin</sub>), 46.2 (d,  $J_{CP} = 7$  Hz, NCH<sub>2</sub>), 41.2 (d,  $J_{CP} = 20$  Hz, CH<sub>olefin</sub>), 34.0 (COOCH<sub>2</sub>CH<sub>3</sub>), 27.4 (d,  $J_{CP} = 25$ Hz, PCH<sub>2</sub>), 26.3 (CH-*i*Pr), 24.5 (CH-*i*Pr), 23.3 (CH<sub>3</sub>-*i*Pr), 22.4 (CH<sub>3</sub>-*i*Pr), 22.3 (CH<sub>3</sub>-*i*Pr), 21.8 (CH<sub>3</sub>-*i*Pr), 14.4 (d,  $J_{CP} = 20$  Hz, COOCH<sub>2</sub>CH<sub>3</sub>), 13.9 (COOCH<sub>2</sub>CH<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  23.7. IR (KBr): v(C-O) = 1668 cm<sup>-1</sup> (str). Anal. Calcd for C<sub>37</sub>H<sub>45</sub>N<sub>2</sub>O<sub>4</sub>PNi: C, 66.19; H, 6.76; N, 4.17. Found: C, 66.28; H, 6.49; N, 4.29.

#### Alternative synthetic procedure for the preparation of 2a.

Di-*n*-butylmagnesium (0.53 mmol, solution 1 M in heptane) was added slowly to a solution of **1b** (0.5 g, 0.8 mmol) and styrene (0.18 mL, 1.6 mmol) in THF (5 mL) at -78°C. The mixture was stirred for 1 hour at -78°C and then, at room temperature for additional 90 min. The solvent was removed under vacuum and the solid washed with distilled water to remove the magnesium salts, and finally with petroleum ether to afford **2a** as yellow solid (0.48 g, 87 %).

**Typical catalytic procedure for Kumada-Tamao-Corriu reactions.** To a mixture of the catalyst (0.1 to 5 mol%) and the (hetero)aryl chloride (0.5 mmol) in THF (1 mL), phenylmagnesium chloride (0.75 mmol, 1 M in THF) was added under a nitrogen atmosphere. The reaction mixture was stirred at a room temperature for a given time (1 h or 16 h). A saturated solution of NH<sub>4</sub>Cl was added and the mixture was extracted with diethyl ether (3 x 5 mL). The combined organic layers were dried over anhydrous MgSO<sub>4</sub> and the solvent was evaporated to dryness. The yield of product was determined by <sup>1</sup>H NMR using anisole as internal standard.

**Typical catalytic procedure for Suzuki-Miyaura reactions.** The catalyst (1 or 3 mol%), the base  $K_3PO_4$  (1.3 mmol), phenylboronic acid (0.65 mmol) and toluene (2 mL) were added in turn to a vial equipped with a J Young tap and containing a magnetic bar. The aryl chloride (0.5 mmol) was added under a nitrogen atmosphere. The reaction mixture was stirred for 18 h at 80 °C in an oil bath. The reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate (10 mL) and filtered through celite. After evaporation of the solvent, the crude was analyzed by <sup>1</sup>H NMR using anisole as internal standard.

**Typical catalytic procedure for Buchwald-Hartwig amination reactions.** The catalyst (5 or 10 mol%), the base NaOtBu or LiOtBu (0.6 mmol) and dioxane (1 mL) were added in turn to a vial equipped with a J Young tap and containing a magnetic bar. The *N*-nucleophile (0.6 mmol) and the (hetero)aryl chloride (0.5 mmol) were added under a nitrogen atmosphere. The reaction mixture was stirred at 110°C for 16 h in an oil bath. The reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate (10 mL) and filtered through celite. The clean solution was evaporated to dryness, and the residue was analyzed by <sup>1</sup>H NMR using anisole as internal standard. Example of the yield determination by <sup>1</sup>H NMR in the Kumada-Tamao-Corriu reaction.



Example of the yield determination by <sup>1</sup>H NMR in the Suzuki-Miyaura reaction.



Example of the yield determination by <sup>1</sup>H NMR in the Buchwald-Hartwig reaction.







Variable temperature <sup>1</sup>H NMR studies carried out with 1b in CD<sub>2</sub>Cl<sub>2</sub>.



With the coalescence temperatures (*Tc*) and the separation ( $\delta v$ ) of the corresponding two signals at low temperature, the  $\Delta G^{\dagger}$  values of interconversion processes *syn-syn* and *anti-anti* were determined.<sup>4</sup> It was not possible to determine the coalescence of the *anti* proton resonances for **1a** due to strong overlap with the signal of the methyl groups.

| Complex | Exchanging protons | δv (Hz ) | <i>Tc</i> (K) | $\Delta G^{\dagger}$ (kJ mol <sup>-1</sup> ) |
|---------|--------------------|----------|---------------|----------------------------------------------|
| 1a      | syn-syn            | 55.1     | 288           | 58.9                                         |
| 1b      | anti-anti          | 37.5     | 258           | 53.3                                         |
| 1b      | syn-syn            | 62.4     | 283           | 57.5                                         |

*Table S1.*  $\delta v$ , *T*c and  $\Delta G^{\dagger}$  data for complexes **1a** and **1b**.<sup>a</sup>

<sup>a</sup>Complex concentration:  $1.50 \times 10^{-2}$  M (in 0.7 mL of CD<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR spectra recorded in 500 MHz spectrometer.

#### References

- Tenorio, M. J.; Puerta, M. C.; Salcedo I.; Valerga, P. J. *Chem. Soc., Dalton Trans.* 2001, 653.
- 2. Benson, S.; Payne, B. J. Polym. Sci. A. Polym. Chem. 2007, 45, 3637.
- (a) Lee, H. M.; Chiu, P. L.; Zeng, J. Y. *Inorganica Chimica Acta* 2004, 357, 4313. (b) Danopoulos, A. A.; Winston, S.; Gelbrich, T.; Hursthouse, M. B.; Tooze, R. P. *Chem. Commun.* 2002, 482.
- 4. J. Sandström, Dynamic NMR Spectroscopy, Academic Press, London, 1982.

## Low temperature (-30 °C) <sup>1</sup>H NMR spectrum of 1a.



Low temperature (-70 °C) <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 1a.



<sup>31</sup>P{<sup>1</sup>H} NMR spectrum of 1a.



## <sup>1</sup>H NMR spectrum of 1b.



Low temperature (-50 °C) <sup>1</sup>H NMR spectrum of 1b.



Low temperature (-70 °C) <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 1b.



<sup>31</sup>P{<sup>1</sup>H} NMR spectrum of 1b.



<sup>1</sup>H NMR spectrum of 1b-SbF<sub>6</sub>



<sup>13</sup>C NMR spectrum of 1b-SbF<sub>6</sub>.



## <sup>31</sup>P NMR spectrum of 1b-SbF<sub>6</sub>.



<sup>1</sup>H NMR spectrum of 2a.



<sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 2a.



<sup>31</sup>P{<sup>1</sup>H} NMR spectrum of 2a.



## <sup>1</sup>H NMR spectrum of 2b.



## <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 2b.



<sup>31</sup>P{<sup>1</sup>H} NMR spectrum of 2b.



#### X-crystallographic data for 2b.

A summary of the crystallographic data and structure refinement results for **2b** is given in *Table S1*. One crystal coated with dry perfluoropolyether was mounted on a glass fiber and fixed under a cold nitrogen stream. The intensity data were collected on a Bruker-Nonius X8ApexII CCD area detector diffractometer using Mo- $K_{\alpha}$  radiation source ( $\lambda =$ 0.71073 Å) fitted with a graphite monochromator. The data collection strategy used was  $\omega$ and  $\phi$  rotations with narrow frames (width of 0.50 degree). Instrument and crystal stability were evaluated from the measurement of equivalent reflections at different measuring times and no decay was observed. The data were reduced using SAINT<sup>1</sup> and corrected for Lorentz and polarization effects, and a semiempirical absorption correction was applied (SADABS)<sup>2</sup>. The structures were solved by direct methods using SIR-2002<sup>3</sup> and refined against all  $F^2$  data by full-matrix least-squares techniques using SHELXL-2016/6<sup>4</sup> minimizing  $w[Fo^2-Fc^2]^2$ . All the non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were included from calculated positions and allowed to ride on the attached atoms with isotropic temperature factors ( $U_{iso}$  values) fixed at 1.2 times (1.5 times for methyl groups) those  $U_{eq}$  values of the corresponding attached atoms.

#### References

- 1 Bruker. APEX2. Bruker AXS Inc., Madison, Wisconsin, USA, 2007.
- 2 Bruker Advanced X-ray Solutions, SAINT and SADABS programs, Bruker AXS Inc., Madison, WI, 2004.
- C. M. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, G. Polidori,
  R. Spagna, J. Appl. Crystallogr. 2003, 36, 1103.
- 4 G. M. Sheldrick, *Acta Cryst.*, **2015**, C71, 3-8.



ORTEP view of **2b** with the thermal ellipsoids set at 30 % probability level. The hydrogen atoms are omitted for clarity.

| Empirical formula                        | $C_{37}H_{45}N_2NiO_4P$               |                                |
|------------------------------------------|---------------------------------------|--------------------------------|
| Formula weight                           | 671.43                                |                                |
| Temperature                              | 213(2) K                              |                                |
| Wavelength                               | 0.71073 Å                             |                                |
| Crystal system                           | Triclinic                             |                                |
| Space group                              | P 1                                   |                                |
| Unit cell dimensions                     | a = 8.7746(4)  Å                      | $\alpha = 83.689(2)^{\circ}$ . |
|                                          | b = 11.0588(5) Å                      | $\beta = 82.032(2)^{\circ}.$   |
|                                          | c = 18.2168(8) Å                      | $\gamma = 79.558(2)^{\circ}.$  |
| Volume                                   | 1715.10(13) Å <sup>3</sup>            |                                |
| Z                                        | 2                                     |                                |
| Density (calculated)                     | 1.300 Mg/m <sup>3</sup>               |                                |
| Absorption coefficient                   | 0.653 mm <sup>-1</sup>                |                                |
| F(000)                                   | 712                                   |                                |
| Crystal size                             | 0.200 x 0.150 x 0.100 mm <sup>3</sup> |                                |
| Theta range for data collection          | 2.278 to 25.245°.                     |                                |
| Index ranges                             | -10<=h<=10, -13<=k<=12, -21           | <=l<=15                        |
| Reflections collected                    | 32713                                 |                                |
| Independent reflections                  | 6194 [R(int) = 0.0450]                |                                |
| Completeness to theta = $25.242^{\circ}$ | 99.4 %                                |                                |

Table S2. Crystal data and structure refinement for 2b

| Absorption correction             | Semi-empirical from equivalents             |
|-----------------------------------|---------------------------------------------|
| Max. and min. transmission        | 0.9375 and 0.8804                           |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters    | 6194 / 35 / 412                             |
| Goodness-of-fit on F <sup>2</sup> | 1.043                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0393, wR2 = 0.1056                   |
| R indices (all data)              | R1 = 0.0570, wR2 = 0.1130                   |
| Extinction coefficient            | n/a                                         |
| Largest diff. peak and hole       | 0.754 and -0.476 e.Å $^{-3}$                |
|                                   |                                             |

|           | x       | у        | Z       | U(eq)  |
|-----------|---------|----------|---------|--------|
| <br>Ni(1) | 4613(1) | 561(1)   | 2959(1) | 29(1)  |
| P(1)      | 6549(1) | -945(1)  | 2909(1) | 29(1)  |
| O(1)      | 2315(2) | 505(2)   | 4529(1) | 46(1)  |
| O(2)      | 1074(2) | 2379(2)  | 4141(1) | 41(1)  |
| O(3)      | 2229(3) | -1477(2) | 2165(1) | 65(1)  |
| O(4)      | 2269(3) | 513(2)   | 1789(1) | 72(1)  |
| N(1)      | 5673(2) | 2985(2)  | 2587(1) | 33(1)  |
| N(2)      | 7164(2) | 1721(2)  | 3265(1) | 32(1)  |
| C(1)      | 5801(3) | 1835(2)  | 2959(1) | 29(1)  |
| C(2)      | 7874(3) | 2752(3)  | 3065(2) | 40(1)  |
| C(3)      | 6949(3) | 3535(3)  | 2638(2) | 42(1)  |
| C(4)      | 4507(3) | 3459(2)  | 2089(1) | 36(1)  |
| C(5)      | 4828(4) | 3126(3)  | 1360(2) | 47(1)  |
| C(6)      | 3693(4) | 3562(3)  | 892(2)  | 67(1)  |
| C(7)      | 2324(5) | 4299(4)  | 1135(2) | 74(1)  |
| C(8)      | 2060(4) | 4637(3)  | 1850(2) | 58(1)  |
| C(9)      | 3144(3) | 4238(3)  | 2349(2) | 39(1)  |
| C(10)     | 6334(4) | 2339(3)  | 1068(2) | 55(1)  |
| C(11)     | 7173(5) | 3052(5)  | 425(2)  | 103(2) |
| C(12)     | 6070(5) | 1118(4)  | 848(2)  | 82(1)  |
| C(13)     | 2878(3) | 4668(3)  | 3123(2) | 40(1)  |
| C(14)     | 3740(4) | 5737(3)  | 3156(2) | 53(1)  |
| C(15)     | 1169(3) | 5087(3)  | 3399(2) | 51(1)  |
| C(16)     | 7917(3) | 573(2)   | 3638(1) | 35(1)  |
| C(17)     | 8334(3) | -433(2)  | 3101(2) | 34(1)  |
| C(18)     | 7217(3) | -1865(2) | 2116(1) | 33(1)  |
| C(19)     | 8768(3) | -2129(3) | 1803(2) | 42(1)  |
| C(20)     | 9173(4) | -2856(3) | 1211(2) | 55(1)  |
| C(21)     | 8071(4) | -3335(4) | 933(2)  | 65(1)  |
| C(22)     | 6531(4) | -3093(4) | 1238(2) | 64(1)  |
| C(23)     | 6107(3) | -2354(3) | 1819(2) | 47(1)  |
| C(24)     | 6332(3) | -2140(2) | 3682(1) | 30(1)  |
| C(25)     | 7137(3) | -3335(2) | 3654(1) | 36(1)  |
| C(26)     | 7004(4) | -4199(3) | 4261(2) | 46(1)  |
| C(27)     | 6076(4) | -3852(3) | 4907(2) | 47(1)  |
| C(28)     | 5285(3) | -2669(3) | 4941(2) | 46(1)  |
| C(29)     | 5383(3) | -1811(3) | 4328(1) | 39(1)  |
| C(30)     | 1959(3) | 1262(3)  | 4022(1) | 34(1)  |
| C(31)     | 2348(3) | 1095(2)  | 3230(1) | 32(1)  |
| C(32)     | 2697(3) | -147(3)  | 3019(1) | 35(1)  |
| C(33)     | 2377(3) | -463(3)  | 2310(2) | 45(1)  |
| C(34)     | 593(3)  | 2642(3)  | 4905(2) | 45(1)  |
| C(35)     | -899(4) | 2224(3)  | 5195(2) | 56(1)  |
| C(36)     | 2069(6) | 258(5)   | 1066(2) | 99(1)  |
| C(37)     | 693(7)  | 982(6)   | 825(3)  | 142(2) |

*Table S3*. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $Å^2x$  10<sup>3</sup>) for **2b**. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| Table S4. | Bond le | engths | [Å] | and | angles | [°] | for | 2b. |
|-----------|---------|--------|-----|-----|--------|-----|-----|-----|

| Ni(1)-C(1)   | 1.898(3)  | C(15)-H(15B)     | 0.9700     |
|--------------|-----------|------------------|------------|
| Ni(1)-C(32)  | 1.965(2)  | C(15)-H(15C)     | 0.9700     |
| Ni(1)-C(31)  | 1.977(2)  | C(16)-C(17)      | 1.524(4)   |
| Ni(1)-P(1)   | 2.1527(7) | C(16)-H(16A)     | 0.9800     |
| P(1)-C(18)   | 1.827(3)  | C(16)-H(16B)     | 0.9800     |
| P(1)-C(24)   | 1.836(2)  | C(17)-H(17A)     | 0.9800     |
| P(1)-C(17)   | 1.847(2)  | C(17)-H(17B)     | 0.9800     |
| O(1)-C(30)   | 1.211(3)  | C(18)-C(23)      | 1.392(4)   |
| O(2)-C(30)   | 1.357(3)  | C(18)-C(19)      | 1.392(4)   |
| O(2)-C(34)   | 1.442(3)  | C(19)-C(20)      | 1.385(4)   |
| O(3)-C(33)   | 1.214(4)  | C(19)-H(19)      | 0.9400     |
| O(4)-C(33)   | 1.354(4)  | C(20)-C(21)      | 1.361(5)   |
| O(4)-C(36)   | 1.417(3)  | C(20)-H(20)      | 0.9400     |
| N(1)-C(1)    | 1.367(3)  | C(21)-C(22)      | 1.378(5)   |
| N(1)-C(3)    | 1.386(3)  | C(21)-H(21)      | 0.9400     |
| N(1)-C(4)    | 1.451(3)  | C(22)-C(23)      | 1.378(4)   |
| N(2)-C(1)    | 1.369(3)  | C(22)-H(22)      | 0.9400     |
| N(2)-C(2)    | 1.386(3)  | C(23)-H(23)      | 0.9400     |
| N(2)-C(16)   | 1.464(3)  | C(24)-C(25)      | 1.384(4)   |
| C(2)-C(3)    | 1.337(4)  | C(24)-C(29)      | 1.387(3)   |
| C(2)-H(2)    | 0.9400    | C(25)-C(26)      | 1.386(4)   |
| C(3)-H(3)    | 0.9400    | C(25)-H(25)      | 0.9400     |
| C(4)-C(5)    | 1.396(4)  | C(26)-C(27)      | 1.383(4)   |
| C(4)-C(9)    | 1.398(4)  | C(26)-H(26)      | 0.9400     |
| C(5)-C(6)    | 1.385(4)  | C(27)-C(28)      | 1.369(4)   |
| C(5)-C(10)   | 1.509(4)  | C(27)-H(27)      | 0.9400     |
| C(6)-C(7)    | 1.372(5)  | C(28)-C(29)      | 1.387(4)   |
| C(6)-H(6)    | 0.9400    | C(28)-H(28)      | 0.9400     |
| C(7)-C(8)    | 1.371(4)  | C(29)-H(29)      | 0.9400     |
| C(7)-H(7)    | 0.9400    | C(30)-C(31)      | 1.461(3)   |
| C(8)-C(9)    | 1.388(4)  | C(31)-C(32)      | 1.435(4)   |
| C(8)-H(8)    | 0.9400    | C(31)-H(31)      | 0.9900     |
| C(9)-C(13)   | 1.511(4)  | C(32)-C(33)      | 1.450(4)   |
| C(10)-C(12)  | 1.515(5)  | C(32)-H(32)      | 0.9900     |
| C(10)-C(11)  | 1.518(5)  | C(34)-C(35)      | 1.476(4)   |
| C(10)-H(10)  | 0.9900    | C(34)-H(34A)     | 0.9800     |
| C(11)-H(11A) | 0.9700    | C(34)-H(34B)     | 0.9800     |
| C(11)-H(11B) | 0.9700    | C(35)-H(35A)     | 0.9700     |
| C(11)-H(11C) | 0.9700    | C(35)-H(35B)     | 0.9700     |
| C(12)-H(12A) | 0.9700    | C(35)-H(35C)     | 0.9700     |
| C(12)-H(12B) | 0.9700    | C(36)-C(37)      | 1.418(4)   |
| C(12)-H(12C) | 0.9700    | C(36)-H(36A)     | 0.9800     |
| C(13)-C(15)  | 1.519(4)  | C(36)-H(36B)     | 0.9800     |
| C(13)-C(14)  | 1.525(4)  | C(37)-H(37A)     | 0.9700     |
| C(13)-H(13)  | 0.9900    | C(37)-H(37B)     | 0.9700     |
| C(14)-H(14A) | 0.9700    | C(37)-H(37C)     | 0.9700     |
| C(14)-H(14B) | 0.9700    |                  |            |
| C(14)-H(14C) | 0.9700    | C(1)-Ni(1)-C(32) | 155.78(11) |
| C(15)-H(15A) | 0.9700    | C(1)-Ni(1)-C(31) | 113.39(11) |
|              |           |                  |            |

| C(32)-Ni(1)-C(31)                         | 42.69(11)            | H(11A)-C(11)-H(11B)                        | 109.5                  |
|-------------------------------------------|----------------------|--------------------------------------------|------------------------|
| C(1)-Ni(1)-P(1)                           | 96.78(7)             | C(10)-C(11)-H(11C)                         | 109.5                  |
| C(32)-Ni(1)-P(1)                          | 107.35(8)            | H(11A)-C(11)-H(11C)                        | 109.5                  |
| C(31)-Ni(1)-P(1)                          | 147.23(8)            | H(11B)-C(11)-H(11C)                        | 109.5                  |
| C(18)-P(1)-C(24)                          | 102.10(12)           | C(10)-C(12)-H(12A)                         | 109.5                  |
| C(18)-P(1)-C(17)                          | 103.80(12)           | C(10)-C(12)-H(12B)                         | 109.5                  |
| C(24)-P(1)-C(17)                          | 100.47(11)           | H(12A)-C(12)-H(12B)                        | 109.5                  |
| C(18)-P(1)-Ni(1)                          | 125.04(8)            | C(10)-C(12)-H(12C)                         | 109.5                  |
| C(24)-P(1)-Ni(1)                          | 112.12(8)            | H(12A)-C(12)-H(12C)                        | 109.5                  |
| C(17)-P(1)-Ni(1)                          | 110.31(9)            | H(12B)-C(12)-H(12C)                        | 109.5                  |
| C(30)-O(2)-C(34)                          | 116.9(2)             | C(9)-C(13)-C(15)                           | 113.6(2)               |
| C(33)-O(4)-C(36)                          | 116.2(3)             | C(9)-C(13)-C(14)                           | 110.8(2)               |
| C(1)-N(1)-C(3)                            | 111.4(2)             | C(15)-C(13)-C(14)                          | 107.7(2)               |
| C(1)-N(1)-C(4)                            | 123.5(2)             | C(9)-C(13)-H(13)                           | 108.2                  |
| C(3)-N(1)-C(4)                            | 124.1(2)             | C(15)-C(13)-H(13)                          | 108.2                  |
| C(1)-N(2)-C(2)                            | 111.5(2)             | C(14)-C(13)-H(13)                          | 108.2                  |
| C(1)-N(2)-C(16)                           | 123.8(2)             | C(13)-C(14)-H(14A)                         | 109.5                  |
| C(2)-N(2)-C(16)                           | 123.8(2)             | C(13)-C(14)-H(14B)                         | 109.5                  |
| N(1)-C(1)-N(2)                            | 103.2(2)             | H(14A)-C(14)-H(14B)                        | 109.5                  |
| N(1)-C(1)-Ni(1)                           | 130.46(18)           | C(13)-C(14)-H(14C)                         | 109.5                  |
| N(2)-C(1)-Ni(1)                           | 125.80(18)           | H(14A)-C(14)-H(14C)                        | 109.5                  |
| C(3)-C(2)-N(2)                            | 106.8(2)             | H(14B)-C(14)-H(14C)                        | 109.5                  |
| C(3)-C(2)-H(2)                            | 126.6                | C(13)-C(15)-H(15A)                         | 109.5                  |
| N(2)-C(2)-H(2)                            | 126.6                | C(13)-C(15)-H(15H)                         | 109.5                  |
| C(2)- $C(3)$ - $N(1)$                     | 107.0(2)             | H(15A)-C(15)-H(15B)                        | 109.5                  |
| C(2) - C(3) - H(3)                        | 126.5                | C(13)-C(15)-H(15C)                         | 109.5                  |
| N(1)-C(3)-H(3)                            | 126.5                | H(15A)-C(15)-H(15C)                        | 109.5                  |
| C(5)-C(4)-C(9)                            | 120.3<br>123.1(2)    | H(15R) - C(15) - H(15C)                    | 109.5                  |
| C(5) - C(4) - N(1)                        | 117 5(2)             | N(2)-C(16)-C(17)                           | 109.3<br>110.2(2)      |
| C(9)- $C(4)$ - $N(1)$                     | 119.3(2)             | N(2)-C(16)-H(16A)                          | 109.6                  |
| C(6)-C(5)-C(4)                            | 117.0(3)             | C(17)-C(16)-H(16A)                         | 109.6                  |
| C(6)- $C(5)$ - $C(10)$                    | 119.8(3)             | N(2)-C(16)-H(16B)                          | 109.6                  |
| C(4)- $C(5)$ - $C(10)$                    | 123 1(3)             | C(17)- $C(16)$ - $H(16B)$                  | 109.6                  |
| C(7)- $C(6)$ - $C(5)$                     | 123.1(3)             | H(16A)-C(16)-H(16B)                        | 109.0                  |
| C(7)-C(6)-H(6)                            | 110.3                | C(16)-C(17)-P(1)                           | 110.29(17)             |
| C(5)-C(6)-H(6)                            | 119.3                | C(16) - C(17) - H(17A)                     | 109.6                  |
| C(8) - C(7) - C(6)                        | 120 2(3)             | P(1)-C(17)-H(17A)                          | 109.6                  |
| C(8)-C(7)-H(7)                            | 110.2(3)             | C(16)-C(17)-H(17R)                         | 109.6                  |
| C(6)-C(7)-H(7)                            | 119.9                | P(1)-C(17)-H(17B)                          | 109.6                  |
| C(0)-C(1)-C(1)                            | 121 7(3)             | H(17A) - C(17) - H(17B)                    | 109.0                  |
| C(7) - C(8) - C(9)                        | 121.7(3)             | C(23) C(18) C(19)                          | 108.1<br>118.2(2)      |
| C(7)- $C(8)$ - $H(8)$                     | 119.2                | C(23) - C(18) - C(17)                      | 110.2(2)<br>117.67(10) |
| $C(9)$ - $C(0)$ - $\Pi(0)$                | 115.2                | C(10) C(18) P(1)                           | 117.07(19)<br>124.1(2) |
| C(8) - C(9) - C(4)<br>C(8) - C(9) - C(13) | 121.2(3)             | $C(19)$ - $C(10)$ - $\Gamma(1)$            | 124.1(2)<br>120.2(3)   |
| C(8)-C(9)-C(13)                           | 121.2(3)<br>122.2(2) | C(20) - C(19) - C(18)                      | 120.2(3)               |
| C(4)- $C(3)$ - $C(13)$                    | 122.2(2)<br>112.0(3) | C(18) C(19) H(19)                          | 119.9                  |
| C(5) - C(10) - C(12)                      | 112.0(3)<br>100.8(3) | $C(13)-C(13)-\Pi(13)$<br>C(21) C(20) C(10) | 119.9                  |
| C(3)- $C(10)$ - $C(11)$                   | 109.8(3)             | C(21)- $C(20)$ - $C(19)$                   | 120.7(5)               |
| C(12)- $C(10)$ - $C(11)$                  | 111.3(3)             | C(21)- $C(20)$ - $H(20)$                   | 119.0                  |
| $C(12) - C(10) - \Pi(10)$                 | 107.7                | C(19)-C(20)-H(20)                          | 119.0                  |
| C(12)- $C(10)$ - $H(10)$                  | 107.7                | C(20) - C(21) - C(22)                      | 120.1(3)               |
| C(11)- $C(10)$ - $H(10)$                  | 10/./                | C(20)-C(21)-H(21)                          | 120.0                  |
| C(10)- $C(11)$ - $H(11A)$                 | 109.5                | C(22)-C(21)-H(21)                          | 120.0                  |
| C(10)-C(11)-H(11B)                        | 109.5                | C(23)-C(22)-C(21)                          | 119.9(3)               |

| C(23)-C(22)-H(22)                                  | 120.1             |
|----------------------------------------------------|-------------------|
| C(21)-C(22)-H(22)                                  | 120.1             |
| C(22)-C(23)-C(18)                                  | 121.0(3)          |
| C(22)-C(23)-H(23)                                  | 119.5             |
| C(18)-C(23)-H(23)                                  | 119.5             |
| C(25)-C(24)-C(29)                                  | 119.1(2)          |
| C(25)-C(24)-P(1)                                   | 122.32(19)        |
| C(29)-C(24)-P(1)                                   | 118.5(2)          |
| C(24)- $C(25)$ - $C(26)$                           | 120.9(3)          |
| C(24)- $C(25)$ - $H(25)$                           | 119.6             |
| C(26)-C(25)-H(25)                                  | 119.6             |
| C(27)- $C(26)$ - $C(25)$                           | 119.0             |
| C(27) - C(26) - C(25)                              | 120.3             |
| C(27)- $C(20)$ - $H(20)$                           | 120.3             |
| $C(23)-C(20)-\Pi(20)$<br>C(28)-C(27)-C(26)         | 120.3<br>120.1(3) |
| C(28) - C(27) - C(20)                              | 120.1(3)          |
| C(28)-C(27)-H(27)                                  | 119.9             |
| C(26)-C(27)-H(27)                                  | 119.9             |
| C(27)-C(28)-C(29)                                  | 120.6(3)          |
| С(27)-С(28)-Н(28)                                  | 119.7             |
| C(29)-C(28)-H(28)                                  | 119.7             |
| C(24)-C(29)-C(28)                                  | 119.9(3)          |
| C(24)-C(29)-H(29)                                  | 120.1             |
| C(28)-C(29)-H(29)                                  | 120.1             |
| O(1)-C(30)-O(2)                                    | 122.1(2)          |
| O(1)-C(30)-C(31)                                   | 126.0(2)          |
| O(2)-C(30)-C(31)                                   | 111.9(2)          |
| C(32)-C(31)-C(30)                                  | 117.4(2)          |
| C(32)-C(31)-Ni(1)                                  | 68.21(13)         |
| C(30)-C(31)-Ni(1)                                  | 111.92(17)        |
| C(32)-C(31)-H(31)                                  | 116.7             |
| C(30)-C(31)-H(31)                                  | 116.7             |
| Ni(1)-C(31)-H(31)                                  | 116.7             |
| C(31)-C(32)-C(33)                                  | 122.2(2)          |
| C(31)-C(32)-Ni(1)                                  | 69.10(14)         |
| C(33)-C(32)-Ni(1)                                  | 113.90(19)        |
| C(31)-C(32)-H(32)                                  | 114.6             |
| C(33)-C(32)-H(32)                                  | 114.6             |
| Ni(1)-C(32)-H(32)                                  | 114.6             |
| O(3)-C(33)-O(4)                                    | 121.0(3)          |
| O(3)-C(33)-C(32)                                   | 126.1(3)          |
| O(4)-C(33)-C(32)                                   | 112.9(3)          |
| O(2)-C(34)-C(35)                                   | 111.6(2)          |
| O(2)-C(34)-H(34A)                                  | 109.3             |
| C(35)-C(34)-H(34A)                                 | 109.3             |
| O(2)-C(34)-H(34B)                                  | 109.3             |
| C(35)-C(34)-H(34B)                                 | 109.3             |
| H(34A)-C(34)-H(34B)                                | 108.0             |
| C(34)-C(35)-H(35A)                                 | 109 5             |
| C(34)-C(35)-H(35R)                                 | 109.5             |
| H(35A)-C(35)-H(35B)                                | 109.5             |
| C(34)-C(35)-H(35C)                                 | 109.5             |
| H(35A) - C(35) - H(35C)                            | 109.5             |
| H(35R) - C(35) - H(35C)<br>H(35R) - C(35) - H(35C) | 109.5             |
| $II(JJJJ) \cup (JJ)^{II}(JJU)$                     | 107.5             |

| O(4)-C(36)-C(37)       | 111.3(4) |
|------------------------|----------|
| O(4)-C(36)-H(36A)      | 109.4    |
| C(37)-C(36)-H(36A)     | 109.4    |
| O(4)-C(36)-H(36B)      | 109.4    |
| C(37)-C(36)-H(36B)     | 109.4    |
| H(36A)-C(36)-H(36B)    | 108.0    |
| C(36) C(37) H(37A)     | 100 5    |
| $C(30)-C(37)-\Pi(37A)$ | 109.5    |
| C(36)-C(37)-H(37B)     | 109.5    |
| H(37A)-C(37)-H(37B)    | 109.5    |
| C(36)-C(37)-H(37C)     | 109.5    |
| H(37A)-C(37)-H(37C)    | 109.5    |
| H(37B)-C(37)-H(37C)    | 109.5    |

Symmetry transformations used to generate equivalent atoms:

*Table S5.* Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **2b**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [ h<sup>2</sup> a<sup>\*2</sup>U<sup>11</sup> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sup>12</sup> ]

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Ni(1) | 19(1)           | 38(1)           | 27(1)           | -1(1)           | -2(1)           | -4(1)           |
| P(1)  | 21(1)           | 38(1)           | 28(1)           | -3(1)           | -2(1)           | -4(1)           |
| O(1)  | 49(1)           | 52(1)           | 35(1)           | 2(1)            | -3(1)           | -3(1)           |
| O(2)  | 35(1)           | 49(1)           | 35(1)           | -6(1)           | 0(1)            | -1(1)           |
| O(3)  | 46(1)           | 76(2)           | 81(2)           | -34(1)          | -16(1)          | -13(1)          |
| O(4)  | 87(2)           | 84(2)           | 42(1)           | -13(1)          | -24(1)          | 7(1)            |
| N(1)  | 28(1)           | 36(1)           | 33(1)           | -2(1)           | -5(1)           | -3(1)           |
| N(2)  | 26(1)           | 36(1)           | 32(1)           | -4(1)           | -7(1)           | -4(1)           |
| C(1)  | 25(1)           | 38(1)           | 22(1)           | -3(1)           | 1(1)            | -2(1)           |
| C(2)  | 31(1)           | 42(2)           | 50(2)           | -7(1)           | -9(1)           | -11(1)          |
| C(3)  | 36(2)           | 36(2)           | 57(2)           | 0(1)            | -7(1)           | -11(1)          |
| C(4)  | 36(2)           | 36(2)           | 33(1)           | 2(1)            | -7(1)           | -3(1)           |
| C(5)  | 52(2)           | 49(2)           | 34(2)           | -1(1)           | -4(1)           | 4(1)            |
| C(6)  | 76(2)           | 80(3)           | 36(2)           | -13(2)          | -18(2)          | 20(2)           |
| C(7)  | 75(3)           | 89(3)           | 52(2)           | -15(2)          | -35(2)          | 30(2)           |
| C(8)  | 54(2)           | 65(2)           | 50(2)           | -9(2)           | -19(2)          | 18(2)           |
| C(9)  | 36(2)           | 40(2)           | 39(2)           | 0(1)            | -7(1)           | -2(1)           |
| C(10) | 55(2)           | 69(2)           | 34(2)           | -6(1)           | 2(1)            | 7(2)            |
| C(11) | 83(3)           | 118(4)          | 79(3)           | 24(3)           | 29(2)           | 9(3)            |
| C(12) | 80(3)           | 79(3)           | 81(3)           | -28(2)          | -8(2)           | 14(2)           |
| C(13) | 37(2)           | 41(2)           | 37(1)           | -2(1)           | -3(1)           | 1(1)            |
| C(14) | 49(2)           | 53(2)           | 58(2)           | -14(2)          | -1(2)           | -7(2)           |
| C(15) | 45(2)           | 51(2)           | 54(2)           | -8(2)           | 4(1)            | -4(1)           |
| C(16) | 28(1)           | 41(2)           | 37(1)           | 0(1)            | -12(1)          | -5(1)           |
| C(17) | 22(1)           | 38(2)           | 42(1)           | 0(1)            | -7(1)           | -3(1)           |
| C(18) | 30(1)           | 40(2)           | 26(1)           | 0(1)            | -2(1)           | -2(1)           |
| C(19) | 31(1)           | 53(2)           | 37(1)           | -4(1)           | -1(1)           | -1(1)           |
| C(20) | 43(2)           | 74(2)           | 40(2)           | -11(2)          | 8(1)            | 4(2)            |
| C(21) | 69(2)           | 84(3)           | 38(2)           | -24(2)          | -4(2)           | 4(2)            |
| C(22) | 63(2)           | 87(3)           | 46(2)           | -26(2)          | -14(2)          | -7(2)           |
| C(23) | 38(2)           | 65(2)           | 38(2)           | -12(1)          | -4(1)           | -6(1)           |
| C(24) | 25(1)           | 39(2)           | 29(1)           | -1(1)           | -6(1)           | -9(1)           |
| C(25) | 35(1)           | 41(2)           | 34(1)           | -4(1)           | -6(1)           | -8(1)           |
| C(26) | 56(2)           | 40(2)           | 44(2)           | 2(1)            | -16(1)          | -12(1)          |
| C(27) | 52(2)           | 59(2)           | 36(2)           | 9(1)            | -13(1)          | -27(2)          |
| C(28) | 39(2)           | 70(2)           | 30(1)           | 0(1)            | 0(1)            | -17(2)          |
| C(29) | 30(1)           | 51(2)           | 34(1)           | -5(1)           | -2(1)           | -5(1)           |
| C(30) | 21(1)           | 44(2)           | 37(1)           | -2(1)           | -1(1)           | -11(1)          |
| C(31) | 21(1)           | 41(2)           | 33(1)           | 1(1)            | -4(1)           | -3(1)           |
| C(32) | 22(1)           | 45(2)           | 39(1)           | -2(1)           | -4(1)           | -8(1)           |
| C(33) | 24(1)           | 62(2)           | 51(2)           | -15(2)          | -5(1)           | 0(1)            |
| C(34) | 45(2)           | 51(2)           | 38(2)           | -12(1)          | -1(1)           | -7(1)           |
| C(35) | 47(2)           | 72(2)           | 51(2)           | -17(2)          | 8(1)            | -20(2)          |
| C(36) | 112(3)          | 123(3)          | 60(2)           | -24(2)          | -32(2)          | 13(2)           |
| C(37) | 151(4)          | 175(5)          | 100(3)          | -25(3)          | -75(3)          | 28(4)           |

S26

|        | Х     | У     | Z    | U(eq) |
|--------|-------|-------|------|-------|
| H(2)   | 8824  | 2875  | 3203 | 48    |
| H(3)   | 7130  | 4312  | 2414 | 51    |
| H(6)   | 3865  | 3349  | 398  | 80    |
| H(7)   | 1563  | 4573  | 811  | 89    |
| H(8)   | 1122  | 5152  | 2006 | 70    |
| H(10)  | 7008  | 2158  | 1473 | 67    |
| H(11A) | 6519  | 3267  | 26   | 154   |
| H(11B) | 8147  | 2546  | 245  | 154   |
| H(11C) | 7388  | 3800  | 593  | 154   |
| H(12A) | 5463  | 714   | 1257 | 123   |
| H(12B) | 7069  | 594   | 730  | 123   |
| H(12C) | 5509  | 1263  | 415  | 123   |
| H(13)  | 3300  | 3973  | 3469 | 48    |
| H(14A) | 4844  | 5485  | 2998 | 80    |
| H(14B) | 3600  | 5970  | 3662 | 80    |
| H(14C) | 3326  | 6436  | 2829 | 80    |
| H(15A) | 781   | 5853  | 3120 | 77    |
| H(15B) | 1063  | 5216  | 3923 | 77    |
| H(15C) | 572   | 4459  | 3331 | 77    |
| H(16A) | 7210  | 309   | 4067 | 42    |
| H(16B) | 8866  | 711   | 3820 | 42    |
| H(17A) | 9031  | -1136 | 3316 | 41    |
| H(17B) | 8883  | -115  | 2634 | 41    |
| H(19)  | 9542  | -1813 | 1995 | 50    |
| H(20)  | 10220 | -3021 | 999  | 66    |
| H(21)  | 8360  | -3830 | 532  | 78    |
| H(22)  | 5772  | -3433 | 1050 | 76    |
| H(23)  | 5052  | -2178 | 2018 | 56    |
| H(25)  | 7781  | -3564 | 3218 | 44    |
| H(26)  | 7540  | -5013 | 4234 | 55    |
| H(27)  | 5989  | -4430 | 5322 | 56    |
| H(28)  | 4670  | -2435 | 5384 | 55    |
| H(29)  | 4808  | -1009 | 4351 | 46    |
| H(31)  | 1807  | 1725  | 2882 | 39    |
| H(32)  | 2568  | -789  | 3436 | 42    |
| H(34A) | 476   | 3533  | 4940 | 54    |
| H(34B) | 1402  | 2229  | 5211 | 54    |
| H(35A) | -1701 | 2630  | 4892 | 84    |
| H(35B) | -1199 | 2429  | 5705 | 84    |
| H(35C) | -775  | 1337  | 5179 | 84    |
| H(36A) | 2010  | -619  | 1068 | 119   |
| H(36B) | 2974  | 431   | 717  | 119   |
| H(37A) | -212  | 761   | 1146 | 214   |
| H(37B) | 624   | 832   | 317  | 214   |
| H(37C) | 725   | 1849  | 848  | 214   |

Table S6. Hydrogen coordinates (  $x\;10^4$  ) and isotropic displacement parameters (Å  $^2x\;10\;^3$  ) for 2b. .

*Table S7*. Torsion angles [°] for **2b**.

| C(3)-N(1)-C(1)-N(2)   | 2.6(3)      |
|-----------------------|-------------|
| C(4)-N(1)-C(1)-N(2)   | 171.5(2)    |
| C(3)-N(1)-C(1)-Ni(1)  | -169.00(19) |
| C(4)-N(1)-C(1)-Ni(1)  | -0.1(3)     |
| C(2)-N(2)-C(1)-N(1)   | -2.1(3)     |
| C(16)-N(2)-C(1)-N(1)  | -171.5(2)   |
| C(2)-N(2)-C(1)-Ni(1)  | 169.97(18)  |
| C(16)-N(2)-C(1)-Ni(1) | 0.6(3)      |
| C(32)-Ni(1)-C(1)-N(1) | -47.5(4)    |
| C(31)-Ni(1)-C(1)-N(1) | -55.4(2)    |
| P(1)-Ni(1)-C(1)-N(1)  | 137.7(2)    |
| C(32)-Ni(1)-C(1)-N(2) | 142.6(2)    |
| C(31)-Ni(1)-C(1)-N(2) | 134.7(2)    |
| P(1)-Ni(1)-C(1)-N(2)  | -32.2(2)    |
| C(1)-N(2)-C(2)-C(3)   | 0.9(3)      |
| C(16)-N(2)-C(2)-C(3)  | 170.3(2)    |
| N(2)-C(2)-C(3)-N(1)   | 0.7(3)      |
| C(1)-N(1)-C(3)-C(2)   | -2.1(3)     |
| C(4)-N(1)-C(3)-C(2)   | -171.0(2)   |
| C(1)-N(1)-C(4)-C(5)   | -82.8(3)    |
| C(3)-N(1)-C(4)-C(5)   | 84.7(3)     |
| C(1)-N(1)-C(4)-C(9)   | 98.5(3)     |
| C(3)-N(1)-C(4)-C(9)   | -94.0(3)    |
| C(9)-C(4)-C(5)-C(6)   | -2.6(5)     |
| N(1)-C(4)-C(5)-C(6)   | 178.7(3)    |
| C(9)-C(4)-C(5)-C(10)  | 176.8(3)    |
| N(1)-C(4)-C(5)-C(10)  | -1.9(4)     |
| C(4)-C(5)-C(6)-C(7)   | 0.7(6)      |
| C(10)-C(5)-C(6)-C(7)  | -178.8(4)   |
| C(5)-C(6)-C(7)-C(8)   | 1.0(7)      |
| C(6)-C(7)-C(8)-C(9)   | -0.9(6)     |
| C(7)-C(8)-C(9)-C(4)   | -0.9(5)     |
| C(7)-C(8)-C(9)-C(13)  | 176.8(3)    |
| C(5)-C(4)-C(9)-C(8)   | 2.7(4)      |
| N(1)-C(4)-C(9)-C(8)   | -178.6(3)   |
| C(5)-C(4)-C(9)-C(13)  | -175.0(3)   |

| N(1)-C(4)-C(9)-C(13)    | 3.7(4)     |
|-------------------------|------------|
| C(6)-C(5)-C(10)-C(12)   | -64.6(4)   |
| C(4)-C(5)-C(10)-C(12)   | 115.9(4)   |
| C(6)-C(5)-C(10)-C(11)   | 59.9(5)    |
| C(4)-C(5)-C(10)-C(11)   | -119.5(4)  |
| C(8)-C(9)-C(13)-C(15)   | 23.8(4)    |
| C(4)-C(9)-C(13)-C(15)   | -158.6(3)  |
| C(8)-C(9)-C(13)-C(14)   | -97.6(3)   |
| C(4)-C(9)-C(13)-C(14)   | 80.0(3)    |
| C(1)-N(2)-C(16)-C(17)   | 60.2(3)    |
| C(2)-N(2)-C(16)-C(17)   | -107.9(3)  |
| N(2)-C(16)-C(17)-P(1)   | -71.5(2)   |
| C(18)-P(1)-C(17)-C(16)  | 167.70(18) |
| C(24)-P(1)-C(17)-C(16)  | -86.94(19) |
| Ni(1)-P(1)-C(17)-C(16)  | 31.5(2)    |
| C(24)-P(1)-C(18)-C(23)  | 78.0(2)    |
| C(17)-P(1)-C(18)-C(23)  | -177.8(2)  |
| Ni(1)-P(1)-C(18)-C(23)  | -50.3(2)   |
| C(24)-P(1)-C(18)-C(19)  | -100.3(2)  |
| C(17)-P(1)-C(18)-C(19)  | 3.8(3)     |
| Ni(1)-P(1)-C(18)-C(19)  | 131.3(2)   |
| C(23)-C(18)-C(19)-C(20) | 0.3(4)     |
| P(1)-C(18)-C(19)-C(20)  | 178.7(2)   |
| C(18)-C(19)-C(20)-C(21) | -0.8(5)    |
| C(19)-C(20)-C(21)-C(22) | 0.3(6)     |
| C(20)-C(21)-C(22)-C(23) | 0.8(6)     |
| C(21)-C(22)-C(23)-C(18) | -1.4(5)    |
| C(19)-C(18)-C(23)-C(22) | 0.8(4)     |
| P(1)-C(18)-C(23)-C(22)  | -177.7(3)  |
| C(18)-P(1)-C(24)-C(25)  | 23.6(2)    |
| C(17)-P(1)-C(24)-C(25)  | -83.2(2)   |
| Ni(1)-P(1)-C(24)-C(25)  | 159.70(18) |
| C(18)-P(1)-C(24)-C(29)  | -159.5(2)  |
| C(17)-P(1)-C(24)-C(29)  | 93.8(2)    |
| Ni(1)-P(1)-C(24)-C(29)  | -23.4(2)   |
| C(29)-C(24)-C(25)-C(26) | -0.1(4)    |
| P(1)-C(24)-C(25)-C(26)  | 176.8(2)   |
| C(24)-C(25)-C(26)-C(27) | -1.1(4)    |

| C(25)-C(26)-C(27)-C(28) | 0.6(4)     |
|-------------------------|------------|
| C(26)-C(27)-C(28)-C(29) | 1.0(4)     |
| C(25)-C(24)-C(29)-C(28) | 1.7(4)     |
| P(1)-C(24)-C(29)-C(28)  | -175.3(2)  |
| C(27)-C(28)-C(29)-C(24) | -2.2(4)    |
| C(34)-O(2)-C(30)-O(1)   | 1.1(3)     |
| C(34)-O(2)-C(30)-C(31)  | 178.9(2)   |
| O(1)-C(30)-C(31)-C(32)  | 22.4(4)    |
| O(2)-C(30)-C(31)-C(32)  | -155.3(2)  |
| O(1)-C(30)-C(31)-Ni(1)  | -53.5(3)   |
| O(2)-C(30)-C(31)-Ni(1)  | 128.77(18) |
| C(30)-C(31)-C(32)-C(33) | 150.0(2)   |
| Ni(1)-C(31)-C(32)-C(33) | -105.8(2)  |
| C(30)-C(31)-C(32)-Ni(1) | -104.2(2)  |
| C(36)-O(4)-C(33)-O(3)   | -3.6(4)    |
| C(36)-O(4)-C(33)-C(32)  | 175.6(3)   |
| C(31)-C(32)-C(33)-O(3)  | -158.7(3)  |
| Ni(1)-C(32)-C(33)-O(3)  | 121.8(3)   |
| C(31)-C(32)-C(33)-O(4)  | 22.1(4)    |
| Ni(1)-C(32)-C(33)-O(4)  | -57.4(3)   |
| C(30)-O(2)-C(34)-C(35)  | -88.7(3)   |
| C(33)-O(4)-C(36)-C(37)  | 122.6(5)   |
|                         |            |

Symmetry transformations used to generate equivalent atoms: