Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

## **Electronic Supporting Information for:**

## A comparison of optical, electrochemical and self-assembling properties of two structural isomers based on 1,6- and 1,8-pyrenedione chromophores

Samantha N. Keller, and Todd. C. Sutherland\*

## Table of contents:

| Figure 1. <sup>1</sup> H and <sup>13</sup> C NMR of 32                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2. <sup>1</sup> H and <sup>13</sup> C NMR of 4                                                                                                                                                                                                                                                                                                                  |
| Figure 3. <sup>1</sup> H and <sup>13</sup> C NMR of 5                                                                                                                                                                                                                                                                                                                  |
| Figure 4 $^1\text{H}$ and $^{13}\text{C}$ NMR of 6                                                                                                                                                                                                                                                                                                                     |
| Figure 5 $^1\text{H}$ and $^{13}\text{C}$ NMR of 7                                                                                                                                                                                                                                                                                                                     |
| Figure 6. <sup>1</sup> H and <sup>13</sup> C NMR of 87                                                                                                                                                                                                                                                                                                                 |
| Figure 7. <sup>1</sup> H and <sup>13</sup> C NMR of 16ketPyr8                                                                                                                                                                                                                                                                                                          |
| Figure 8. <sup>1</sup> H and <sup>13</sup> C NMR of 18ketPyr9                                                                                                                                                                                                                                                                                                          |
| Figure 9. DPVs of <b>16ketPyr</b> and <b>18ketPyr</b> in $CH_2Cl_2$ solution with 0.05 MNBu <sub>4</sub> PF <sub>6</sub> electrolyte. Measurements were taken with a Pt button working electrode, Ag wire reference electrode, and Pt wire counter electrode                                                                                                           |
| Figure 10. CVs of <b>16ketPyr</b> and <b>18ketPyr</b> in $CH_2Cl_2$ solution with 0.05 M NBu <sub>4</sub> PF <sub>6</sub> electrolyte. Measurements were taken with a scan rate of 20 mV s <sup>-1</sup> using a glassy carbon working electrode, Ag wire reference electrode, and Pt wire counter electrode                                                           |
| Figure 11. Spectroelectrochemical studies of (a) <b>16ketPyr</b> and (b) <b>18ketPyr</b> in CHCl <sub>3</sub> as a function of applied potential. Initial spectra (0 V applied) are dotted lines, and final spectra are solid black lines. Application of -700 mV vs Ag wire quasi reference                                                                           |
| Figure 12. Molecular orbital energy levels and surfaces calculated for compounds <b>16ketPyr</b> (left) and <b>18ketPyr</b> (right). Surfaces calculated at the B3LYP/6-31+g(d) level of theory and basis set, and energy levels obtained by single point TD-DFT calculations at the same level of theory and basis set, including the PCM solvent model in chloroform |
| Table 1. Allowed transitions calculated with TD-DFT for compounds 16ketPyr and 18ketPyr                                                                                                                                                                                                                                                                                |



190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Chemical Shift (ppm)

Figure 1. <sup>1</sup>H and <sup>13</sup>C NMR of 3











Figure 5 <sup>1</sup>H and <sup>13</sup>C NMR of 7









Figure 9. DPVs of **16ketPyr** and **18ketPyr** in  $CH_2Cl_2$  solution with 0.05 M NBu<sub>4</sub>PF<sub>6</sub> electrolyte. Measurements were taken with a Pt button working electrode, Ag wire reference electrode, and Pt wire counter electrode.



Figure 10. CVs of **16ketPyr** and **18ketPyr** in  $CH_2Cl_2$  solution with 0.05 M NBu<sub>4</sub>PF<sub>6</sub> electrolyte. Measurements were taken with a scan rate of 20 mVs<sup>-1</sup> using a glassy carbon working electrode, Ag wire reference electrode, and Pt wire counter electrode.



Figure 11. Spectroelectrochemical studies of (a) **16ketPyr** and (b) **18ketPyr** in CHCl<sub>3</sub> as a function of applied potential. Initial spectra (0V applied) are dotted lines, and final spectra are solid black lines. Application of -700 mV vs Ag wire quasi reference.



Figure 12. Molecular orbital energy levels and surfaces calculated for compounds 16 ketPyr (left) and 18 ketPyr (right). Surfaces calculated at the B3LYP/6-31+g(d) level of theory and basis set, and energy levels obtained by single point TD-DFT calculations at the same level of theory and basis set, including the PCM solvent model in chloroform.

| Compound | Major Transition                                                                            | Wavelength (nm) | Energy (eV) | Oscillator Strength |
|----------|---------------------------------------------------------------------------------------------|-----------------|-------------|---------------------|
| 16ketPyr | HOMO - LUMO (100%)                                                                          | 788             | 1.57        | 0.6615              |
|          | HOMO-2 - LUMO (91%)<br>HOMO-1 - LUMO+1 (7%)                                                 | 481             | 2.57        | 0.5941              |
|          | HOMO-5 - LUMO (37%)<br>HOMO-1 - LUMO+1<br>(51%)<br>HOMO-9 - LUMO (8%)<br>HOMO-2 - LUMO (3%) | 411             | 3.02        | 0.4796              |
|          | HOMO-5 - LUMO (54%)<br>HOMO-1 - LUMO+1<br>(39%)<br>HOMO-2 - LUMO (4%)                       | 391             | 3.17        | 0.2891              |
| 18ketPyr | HOMO - LUMO (100%)                                                                          | 789             | 1.57        | 0.2106              |
|          | HOMO-1 - LUMO (100%)                                                                        | 748             | 1.66        | 0.3135              |
|          | HOMO-2 - LUMO (93%)<br>HOMO-1 - LUMO+1 (2%)                                                 | 504             | 2.45        | 0.4615              |
|          | HOMO-4 - LUMO (56%)<br>HOMO-1 - LUMO+1<br>(42%)                                             | 420             | 2.95        | 0.2860              |
|          | HOMO-9 - LUMO (8%)<br>HOMO-3 - LUMO (81%)<br>HOMO - LUMO+1 (9%)                             | 418             | 2.96        | 0.0527              |
|          | HOMO-3-LUMO(10%)<br>HOMO - LUMO+1 (89%)                                                     | 406             | 3.05        | 0.7381              |
|          | HOMO-4-LUMO (39%)<br>HOMO-2-LUMO (4%)<br>HOMO-1 - LUMO+1<br>(55%)                           | 396             | 3.13        | 0.0022              |

Table 1. Allowed transitions calculated with TD-DFT for compounds 16ketPyr and 18ketPyr.