Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

A Copper-Catalyzed Tandem Reaction for the Construction of Coumarin Fused 9*H*-Pyrrolo[1,2-*a*]indoles

Shao-Jing Jin, Jiao-Mei Guo, Yan-Shuo Zhu, Qi-Lin Wang * and Zhan-Wei Bu *

College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China *E-mail: wangqilin@henu.edu.cn*; <u>buzhanwei@henu.edu.cn</u>.

Table of Contents

1.	General methods	.S2
2.	Experimental data for products 3	.S2
3.	Experimental data for product 4	.S12
4.	Experimental data for product 5	.S13
5.	Crystal data for 31	.S13
6.	Copies of ¹ H NMR and ¹³ C NMR spectra	.S15

1. General methods

NMR spectra were recorded with tetramethylsilane as the internal standard. ¹H NMR spectra were recorded at 400 MHz, and ¹³C NMR spectra were recorded at 100 MHz (Bruker Avance). ¹H NMR chemical shifts (δ) are reported in ppm relative to tetramethylsilane (TMS) with the solvent signal as the internal standard (CDCl₃ at 7.26 ppm). ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.00 ppm). Data are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (double of doublet), br (broad) or m (multiplets), coupling constants (Hz) and integration. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. High resolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. Reactions were monitored by TLC and visualized with ultraviolet light. IR spectra were recorded on a ThermoFisherNicolet Avatar 360 FTIR spectrometer on a KBr beamsplitter. All the solvents were used directly without any purification.

2. Experimental data for products 3

General procedure: To a 5.0 mL vial were successively added 3-arylcarbonyl coumarin 1 (0.16 mmol), 3-alkyl indole 2 (0.24 mmol), CuBr₂ (7.1 mg, 0.032 mmol) and 1.0 mL CH₃CN. The resulting mixture was stirred at 60 °C till almost full consumption of 1 monitored by thin layer chromatography, and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding products **3**. For products **3e**, **3g** and **3k-n**, the precipitate was generated, and only a simple filtration was needed to purify the product.

13-methyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3a**)

Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 80:1 to 60:1); 52.9 mg, 91% yield; reaction time = 17 h; mp 201.0-202.3 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.65 (t, *J* = 8.0 Hz, 1H), 7.55 (s, 2H), 7.44 (d, *J* = 4.0 Hz, 3H), 7.36 (d, *J* = 4.0 Hz, 1H), 7.22-7.09 (m, 4H), 7.01 (t, *J* = 8.0 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 4.29 (q, *J* = 8.0 Hz, 1H), 1.63 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 150.2, 140.7, 137.7, 133.1, 129.8, 129.5, 128.4, 128.3, 127.3, 126.7, 126.1, 124.8, 124.1, 122.9, 122.7, 116.4, 116.0, 113.2, 112.4, 109.0, 34.5, 16.9. IR (KBr) *v* 3441, 3058, 2982, 2931, 1732, 1609, 1469, 1402, 1300, 1154, 1082, 970, 743 cm⁻¹. HRMS (ESI) calcd for C₂₅H₁₇NNaO₂ [M+Na]⁺ 386.1151, found 386.1144.

2,13-dimethyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3b**)

Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 80:1 to 60:1); 40.0 mg, 66% yield; reaction time = 23 h; mp 208.1-209.4 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.65 (s, 2H), 7.56-7.54 (m, 4H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.24-7.21 (m, 2H), 7.14-7.09 (m, 2H), 6.86 (d, *J* = 8.0 Hz, 1H), 4.45 (q, *J* = 8.0 Hz, 1H), 2.46 (s, 3H), 1.76 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 149.4, 141.8, 138.9, 134.0, 133.4, 131.0, 130.6, 129.6, 129.5, 128.4, 128.1, 127.8, 125.8, 125.2, 123.9, 117.3, 116.8, 114.4, 113.5, 110.2, 35.6, 21.2, 18.1. IR (KBr) *v* 3432, 3058, 3030, 2982, 2926, 1726, 1610, 1472, 1404, 1374, 1291, 1184, 1098, 995, 919, 805, 745, 696 cm⁻¹. HRMS (ESI) calcd for C₂₆H₂₀NO₂ [M+H]⁺ 378.1489, found 378.1486.

3,13-dimethyl-7-phenyl-6H,13H-chromeno[4',3':3,4]pyrrolo[1,2-a]indol-6-one (**3c**)

White solid obtained by column chromatography (petroleum ether/ethyl acetate = 80:1 to 60:1); 37.8 mg, 63% yield; reaction time = 40 h; mp 145.4-146.2 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.57 (d, *J* = 8.0 Hz, 3H), 7.46 (d, *J* = 4.0 Hz, 3H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.15 (dd, *J*₁ = *J*₂ = 8.0 Hz, 1H), 7.03 (dd, *J*₁ = *J*₂ = 8.0 Hz, 3H), 6.79 (d, *J* = 8.0 Hz, 1H), 4.33 (q, *J* = 8.0 Hz, 1H), 2.34 (s, 3H), 1.66 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 151.3, 141.9, 138.9, 137.6, 133.6, 130.9, 130.6, 130.5, 129.6, 129.4, 128.4, 127.7, 125.8, 125.2, 124.9, 123.5, 117.8, 114.4, 113.5, 110.0, 35.6, 21.4, 18.0. IR (KBr) *v* 3053, 2958, 2922, 2853, 1726, 1618, 1577, 1468, 1445, 1406, 1088, 1071, 975, 857, 773, 695 cm⁻¹. HRMS (ESI) calcd for C₂₆H₂₀NO₂ [M+H]⁺ 378.1489, found 378.1471.

3-methoxy-13-methyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3d**) Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 40:1 to 10:1); 40.3 mg, 64% yield; reaction time = 64 h; mp 164.8-165.6 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.65 (d, *J* = 8.0 Hz, 3H), 7.54 (t, *J* = 4.0 Hz, 3H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.11 (t, *J* = 8.0 Hz, 1H), 6.87 (d, *J* = 8.0 Hz, 3H), 4.39 (q, *J* = 8.0 Hz, 1H), 3.84 (s, 3H), 1.73 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 152.4, 141.9, 138.9, 132.8, 130.9, 130.6, 130.5, 129.6, 129.4, 128.3, 127.7, 125.7, 125.2, 124.5, 114.5, 113.5, 111.5, 110.1, 109.4, 102.1, 55.6, 35.5, 18.1. IR (KBr) *v* 3352, 3059, 2971, 2931, 1732, 1615, 1500, 1471, 1412, 1239, 1157, 1099, 1034, 752 cm⁻¹. HRMS (ESI) calcd for C₂₆H₂₀NO₃ [M+H]⁺ 394.1438, found 394.1422.

4-methoxy-13-methyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3e**) Light pink solid obtained by filtration of the precipitate; 40.9 mg, 65% yield; reaction time = 38 h; mp 248.5-249.3 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.64 (d, *J* = 4.0 Hz, 2H), 7.52 (t, *J* = 4.0 Hz, 3H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 4.0 Hz, 1H), 7.20 (q, *J* = 8.0 Hz, 2H), 7.11 (t, *J* = 8.0 Hz, 1H), 6.87 (t, *J* = 8.0 Hz, 2H), 4.40 (q, *J* = 8.0 Hz, 1H), 3.93 (s, 3H), 1.73 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 148.1, 141.9, 140.9, 138.9, 134.4, 131.0, 130.6, 129.5, 129.4, 128.3, 127.7, 125.8, 125.2, 123.8, 117.9, 115.6, 114.5, 113.5, 110.0, 109.8, 56.2, 35.6, 18.2. IR (KBr) *v* 3435, 3063, 2971, 2936, 2837, 1729, 1609, 1475, 1409, 1295, 1270, 1210, 1179, 1162, 1110, 1055, 995, 767 cm⁻¹. HRMS (ESI) calcd for C₂₆H₂₀NO₃ [M+H]⁺ 394.1438, found 394.1427.

2,4-di-*tert*-butyl-13-methyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3f**) Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 80:1 to 60:1); 53.3 mg, 70% yield; reaction time = 22 h; mp 222.4-223.9 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.61 (dd, $J_I = J_2 = 4.0$ Hz, 3H), 7.48-7.41 (m, 4H), 7.31 (d, J = 4.0 Hz, 1H), 7.15 (t, J = 8.0 Hz, 1H), 7.06 (t, J = 8.0 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 4.39 (q, J = 8.0 Hz, 1H), 1.71 (d, J = 4.0 Hz, 3H), 1.46 (s, 9H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 146.7, 144.7, 140.9, 138.0, 136.7, 132.7, 129.7, 129.1, 128.6, 128.2, 127.2, 126.7, 124.7, 124.1, 121.3, 117.6, 115.6, 114.5, 112.5, 109.1, 34.7, 34.3, 33.7, 30.6, 29.1, 16.9. IR (KBr) ν 3443, 3055, 2958, 2871, 1735, 1607, 1474, 1394, 1361, 1268, 1182, 1158, 1096, 1042, 997, 870, 748 cm⁻¹. HRMS (ESI) calcd for C₃₃H₃₄NO₂ [M+H]⁺ 476.2584, found 476.2569.

13-methyl-2-nitro-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3g**) Yellow solid obtained by filtration of the precipitate; 59.5 mg, 91% yield; reaction time = 23 h; mp 245.5-246.4 °C; ¹H NMR (400 MHz, CDCl₃), δ 8.67 (d, *J* = 4.0 Hz, 1H), 8.19 (dd, *J₁* = *J₂* = 4.0 Hz, 1H), 7.66 (s, 2H), 7.60-7.55 (m, 4H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 8.0 Hz, 1H), 7.18 (t, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 4.56 (q, *J* = 8.0 Hz, 1H), 1.83 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 155.2, 143.9, 141.5, 138.6, 135.5, 131.7, 130.8, 129.9, 128.8, 128.6, 128.0, 126.5, 125.4, 122.5, 119.5, 118.3, 118.0, 113.8, 112.7. 109.1, 35.7, 18.5. IR (KBr) *v* 3465, 3064, 2976, 1744, 1586, 1517, 1474, 1409, 1381, 1336, 1245, 1186, 1153, 1081, 978, 903, 809, 745, 700 cm⁻¹. HRMS (ESI) calcd for C₂₅H₁₆N₂NaO₄ [M+Na]⁺ 431.1002, found 431.0995.

2-fluoro-13-methyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3h**) Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 80:1 to 60:1); 60.4 mg, 99% yield; reaction time = 11 h; mp 191.7-192.6 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.57 (s, 2H), 7.49-7.46 (m, 3H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.35 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 7.23-7.15 (m, 2H), 7.06 (t, *J* = 8.0 Hz, 1H), 6.95-6.90 (m, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 4.35 (q, *J* = 8.0 Hz, 1H), 1.68 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 157.1 (d, *J* = 73.0 Hz, 1C), 146.3, 140.6, 137.7, 133.6, 129.9, 129.8, 129.5, 128.5, 128.2, 127.4, 126.8, 125.0, 124.2, 117.8 (d, *J* = 11.0 Hz, 1C), 117.1 (d, *J* = 9.0 Hz, 1C), 113.0 (d, *J* = 24.0 Hz, 1C), 112.6, 108.7, 108.5, 34.5, 17.0. IR (KBr) v 3451, 3063, 2980, 2929, 1735, 1609, 1474, 1404, 1375, 1288, 1246, 1189, 1142, 1101, 993, 805, 748, 698 cm⁻¹. HRMS (ESI) calcd for C₂₅H₁₆FNNaO₂ [M+Na]⁺ 404.1057, found 404.1045.

2-chloro-13-methyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3i**) Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 80:1 to 60:1); 44.0 mg, 69% yield; reaction time = 10 h; mp 197.2-198.1 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.60 (s, 1H), 7.55 (s, 2H), 7.47-7.44 (m, 3H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.17-7.13 (m, 3H), 7.04 (t, *J* = 8.0 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 4.33 (q, *J* = 8.0 Hz, 1H), 1.66 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 149.7, 141.7, 138.7, 134.7, 131.0, 130.6, 129.7, 129.2, 129.0, 128.5, 127.9, 127.1, 126.1, 125.3, 123.3, 118.9, 118.6, 113.6, 113.3, 109.7, 35.6, 18.0. IR (KBr) *v* 3447, 3069, 2972, 2930, 1736, 1607, 1471, 1406, 1368, 1282, 1255, 1185, 1086, 983, 743 cm⁻¹. HRMS (ESI) calcd for C₂₅H₁₆ClNNaO₂ [M+Na]⁺ 420.0762, found 420.0754.

2-bromo-13-methyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3**j) Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 80:1 to 60:1); 54.1 mg, 76% yield; reaction time = 10 h; mp 199.3-200.5 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.77 (d, *J* = 4.0 Hz, 1H), 7.56 (s, 2H), 7.48-7.46 (m, 3H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.30 (dd, *J_I* = *J₂* = 4.0 Hz, 1H), 7.19-7.15 (m, 1H), 7.11 (d, *J* = 8.0 Hz, 1H), 7.06 (t, *J* = 8.0 Hz, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 4.36 (q, *J* = 8.0 Hz, 1H), 1.68 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 149.1, 140.6, 137.7, 133.6, 130.0, 129.5, 128.9, 128.6, 128.1, 127.4, 126.8, 125.2, 125.0, 124.2, 118.2, 118.0, 115.5, 112.6, 112.1, 108.7, 34.5, 17.0. IR (KBr) *v* 3444, 2967, 2928, 1734, 1605, 1468, 1394, 1365, 1257, 1216, 1184, 1152, 1095, 975, 811 cm⁻¹. HRMS (ESI) calcd for C₂₅H₁₆BrNNaO₂ [M+Na]⁺ 464.0257, found 464.0244.

1-chloro-13-methyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3**k) White solid obtained by filtration of the precipitate; 62.3 mg, 98% yield; reaction time = 37 h; mp 247.9-248.6 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.56-7.48 (m, 5H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.22-7.14 (m, 4H), 7.01 (t, *J* = 8.0 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 4.68 (q, *J* = 8.0 Hz, 1H), 1.53 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 152.2, 142.3, 138.4, 136.5, 131.4, 131.2, 130.3, 129.7, 128.8, 128.6, 128.4, 127.5, 127.4, 126.0, 125.9, 124.7, 117.3, 116.5, 113.6, 111.0, 40.0, 21.9. IR (KBr) *v* 3452, 3053, 2968, 2929, 1739, 1566, 1476, 1442, 1287, 1229, 1186, 1156, 1101, 979, 945, 756, 742 cm⁻¹. HRMS (ESI) calcd for C₂₅H₁₇ClNO₂ [M+H]⁺ 398.0942, found 398.0938.

4-fluoro-13-methyl-7-phenyl-6H,13H-chromeno[4',3':3,4]pyrrolo[1,2-a]indol-6-one (3I)

White solid obtained by filtration of the precipitate; 53.2 mg, 87% yield; reaction time = 26 h; mp 239.3-240.2 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.63 (s, 2H), 7.54-7.50 (m, 5H), 7.23-7.05 (m, 4H), 6.86 (d, *J* = 8.0 Hz, 1H), 4.41 (q, *J* = 8.0 Hz, 1H), 1.73 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 150.5 (d, *J* = 248.0 Hz, 1C), 141.7, 139.5 (d, *J* = 11.0 Hz, 1C), 138.7, 134.7, 131.2, 130.7 (d, *J* = 28.0 Hz, 1C), 129.6, 129.2, 128.4, 127.8, 126.1, 125.2, 123.7 (d, *J* = 7.0 Hz, 1C), 119.3, 118.8 (d, *J* = 4.0 Hz, 1C), 113.9, 113.8, 113.6, 109.6, 35.6, 18.0. IR (KBr) *v* 3442, 3059, 2970, 1729, 1621, 1476, 1398, 1302, 1260, 1183, 1158, 1098, 1066, 1043, 1001, 745 cm⁻¹. HRMS (ESI) calcd for C₂₅H₁₇FNO₂ [M+H]⁺ 382.1238, found 381.1240.

3-chloro-13-methyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3m**) White solid obtained by filtration of the precipitate; 49.1 mg, 77% yield; reaction time = 22 h; mp 244.7-245.5 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.66 (d, *J* = 8.0 Hz, 1H), 7.63 (s, 2H), 7.55-7.51 (m, 3H), 7.48 (d, *J* = 4.0 Hz, 1H), 7.30 (d, *J* = 4.0 Hz, 1H), 7.25-7.22 (m, 2H), 7.13 (t, *J* = 8.0 Hz, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 4.40 (q, *J* = 8.0 Hz, 1H), 1.73 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 151.6, 141.7, 138.7, 134.3, 132.4, 131.0, 130.9, 130.6, 129.6, 129.2, 128.4, 127.9, 126.0, 125.2, 124.5, 124.2, 117.8, 115.8, 113.6, 109.5, 35.6, 18.0. IR (KBr) *v* 3442, 3065, 2980, 2935, 1740, 1608, 1472, 1407, 1376, 1294, 1156, 1100, 1021, 973, 747 cm⁻¹. HRMS (ESI) calcd for C₂₅H₁₇ClNO₂ [M+H]⁺ 398.0942, found 398.0933.

3-bromo-13-methyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3n**) White solid obtained by filtration of the precipitate; 55.6 mg, 79% yield; reaction time = 22 h; mp 260.5-261.3 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.63 (s, 2H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.54-7.53 (m, 3H), 7.47 (dd, *J*₁ = 8.0 Hz, *J*₂ = 4.0 Hz, 2H), 7.37 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 7.24 (t, *J* = 8.0 Hz, 1H), 7.13 (t, *J* = 8.0 Hz, 1H), 6.87 (d, *J* = 8.0 Hz, 1H), 4.39 (q, *J* = 8.0 Hz, 1H), 1.73 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 151.6, 141.7, 138.7, 134.4, 131.1, 130.9, 130.6, 129.6, 129.2, 128.4, 127.9, 127.1, 126.1, 125.2, 124.8, 120.7, 119.9, 116.3, 113.6, 109.6, 35.6, 17.9. IR (KBr) *v* 3449, 3064, 2980, 1740, 1606, 1470, 1407, 1372, 1293, 1156, 1099, 1061, 972, 748 cm⁻¹. HRMS (ESI) calcd for C₂₅H₁₇BrNO₂ [M+H]⁺ 442.0437, found 442.0424.

13-methyl-7-(p-tolyl)-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3o**)

White solid obtained by column chromatography (petroleum ether/ethyl acetate = 90:1 to 60:1); 39.4 mg, 65% yield; reaction time = 70 h; mp 202.8-203.6 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.74 (dd, $J_1 = J_2 = 4.0$ Hz, 1H), 7.52 (d, J = 4.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 1H), 7.34-7.23 (m, 5H), 7.20 (t, J = 8.0 Hz, 1H), 7.11 (t, J = 8.0 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 4.38 (q, J = 8.0 Hz, 1H), 2.47 (s, 3H), 1.72 (d, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 151.3, 141.8, 139.5, 138.9, 134.0, 130.9, 130.5, 129.2, 127.7, 127.2, 126.5, 125.8, 125.2, 123.9, 123.8, 117.5, 117.2, 114.3, 113.6, 110.0, 35.6, 21.6, 18.1. IR (KBr) v 3050, 2964, 2924, 1733, 1608, 1539, 1461, 1409, 1388, 1294, 1259, 1211, 1080, 970, 830, 759, 742 cm⁻¹. HRMS (ESI) calcd for C₂₆H₂₀NO₂ [M+H]⁺ 378.1489, found 378.1488.

7-(4-methoxyphenyl)-13-methyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3p**) White solid obtained by column chromatography (petroleum ether/ethyl acetate = 40:1 to 25:1); 46.5 mg, 74% yield; reaction time = 63 h; mp 202.8-203.3 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.75 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.31-7.24 (m, 3H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.12 (t, *J* = 8.0 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 1H), 4.38 (q, *J* = 8.0 Hz, 1H), 3.90 (s, 3H), 1.72 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 158.9, 151.3, 141.8, 138.9, 133.9, 132.3, 130.7, 127.8, 127.2, 125.8, 125.2, 123.9, 123.8, 121.5, 117.5, 117.2, 114.2, 113.9, 113.6, 109.9, 55.4, 35.6, 18.1. IR (KBr) *v* 3435, 2933, 2834, 1724, 1608, 1469, 1397, 1290, 1248, 1174, 1112, 1086, 970, 843, 753 cm⁻¹. HRMS (ESI) calcd for $C_{26}H_{20}NO_3 [M+H]^+ 394.1438$, found 394.1429.

7-(3,4-dimethoxyphenyl)-13-methyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3q**) White solid obtained by column chromatography (petroleum ether/ethyl acetate = 30:1 to 5:1); 33.8 mg, 50% yield; reaction time = 36 h; mp 142.7-143.5 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.77 (t, *J* = 4.0 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.34-7.22 (m, 5H), 7.17-7.13 (m, 2H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.98 (s, 1H), 4.43 (q, *J* = 8.0 Hz, 1H), 3.99 (s, 3H), 3.90 (s, 3H), 1.76 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 151.3, 150.0, 148.6, 141.8, 138.9, 133.9, 130.7, 127.8, 127.2, 125.8, 125.2, 123.9, 123.8, 123.3, 121.7, 117.6, 117.2, 114.2, 114.0, 113.6, 111.0, 109.9, 56.1, 55.9, 35.6, 18.0. IR (KBr) v 3423, 3064, 2962, 2931, 1733, 1608, 1501, 1470, 1414, 1303, 1260, 1151, 1093, 1028, 756 cm⁻¹. HRMS (ESI) calcd for C₂₇H₂₂NO₄ [M+H]⁺ 424.1543, found 424.1539.

13-methyl-7-(4-(trifluoromethyl)phenyl)-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3r**)

White solid obtained by column chromatography (petroleum ether/ethyl acetate = 90:1 to 60:1); 26.1 mg, 38% yield; reaction time = 40 h; mp 230.2-231.0 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.81-7.78 (m, 5H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.34-7.25 (m, 4H), 7.18 (t, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 4.45 (q, *J* = 8.0 Hz, 1H), 1.77 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 151.3, 141.8, 138.6, 135.0, 133.1, 131.4, 131.1, 128.6, 127.9, 127.5, 126.2, 125.4, 125.3, 124.1, 123.8, 122.7, 117.6, 116.9, 114.8, 113.4, 110.7, 35.7, 18.0. IR (KBr) *v* 3438, 3068, 2931, 1730, 1613, 1473, 1415, 1326, 1160, 1122, 1062, 974, 855, 757 cm⁻¹. HRMS (ESI) calcd for C₂₆H₁₆F₃NO₂ [M+H]⁺ 432.1206, found 432.1197.

7-(4-fluorophenyl)-13-methyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3s**) Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 90:1 to 65:1); 42.2 mg, 69% yield; reaction time = 12 h; mp 201.5-202.4 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.78 (dd, $J_1 = J_2 = 4.0$ Hz, 1H), 7.64 (s, 2H), 7.51 (d, J = 8.0 Hz, 1H), 7.33-7.22 (m, 6H), 7.16 (t, J = 8.0 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 4.44 (q, J = 8.0 Hz, 1H), 1.76 (d, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4 (d, J = 248.0 Hz, 1C), 158.9, 151.3, 141.8, 138.8, 134.3, 132.9, 129.4, 127.8, 127.3, 126.0, 125.5, 125.3, 124.0, 123.8, 117.6, 117.1, 115.6 (d, J = 18.0 Hz, 1C), 114.4, 113.4, 110.3, 35.7, 18.0. IR (KBr) v 3429, 3065, 2928, 1724, 1607, 1539, 1468, 1392, 1296, 1217, 1157, 1103, 1082, 971, 848, 752 cm⁻¹. HRMS (ESI) calcd for C₂₅H₁₇FNO₂ [M+H]⁺ 382.1238, found 382.1234.

7-(4-bromophenyl)-13-methyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**3t**) Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 90:1 to 60:1); 23.9 mg, 34% yield; reaction time = 12 h; mp 222.0-223.1 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.70 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.48-7.42 (m, 3H), 7.25-7.17 (m, 4H), 7.10 (t, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 4.36 (q, *J* = 8.0 Hz, 1H), 1.68 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 150.2, 140.8, 137.7, 133.5, 131.5, 130.6, 128.1, 127.3, 126.8, 126.4, 125.0, 124.3, 123.0, 122.9, 122.8, 116.6, 115.9, 113.5, 112.4, 109.3, 34.6, 17.0. IR (KBr) *v* 3445, 3070, 2973, 2927, 1733, 1609, 1469, 1409, 1298, 1261, 1184, 1154, 1107, 1061, 971, 758 cm⁻¹. HRMS (ESI) calcd for C₂₅H₁₇BrNO₂ [M+H]⁺ 442.0437, found 442.0442.

13-methyl-7-(thiophen-2-yl)-6H,13H-chromeno[4',3':3,4]pyrrolo[1,2-a]indol-6-one (**3u**)

Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 80:1 to 60:1); 23.5 mg, 40% yield; reaction time = 72 h; mp 214.8-215.9 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.68 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 4.0 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.29-7.15 (m, 6H), 7.10 (t, *J* = 8.0 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 4.34 (q, *J* = 8.0 Hz, 1H), 1.67 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 151.4, 141.6, 138.7, 134.9, 130.7, 129.3, 128.8, 128.0, 127.4, 127.3, 126.0, 125.2, 124.0, 123.8, 121.9, 117.6, 117.0, 114.8, 113.5, 112.3, 35.8, 17.9. IR (KBr) *v* 3087, 2956, 2920, 1726, 1650, 1555, 1375, 1295, 1209, 860, 757 cm⁻¹. HRMS (ESI) calcd for C₂₃H₁₆NO₂S [M+H]⁺ 370.0896, found 370.0882.

3. Experimental data for products 4

General procedure: Under nitrogen atmosphere, compound **3n** (100.0 mg, 0.33 mmol), 4chlorophenylboronic acid (1.5 equiv), Cs_2CO_3 (2.0 equiv), $Pd(OAc)_2$ (0.05 equiv) and butyl di-1adamantylphosphine (0.06 equiv) were successively added to a 15 mL dried tube, followed by adding 2.0 mL DME. The resulting mixture was stirred at 80 °C for 40 h till almost full consumption of **3n** monitored by thin layer chromatography, and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding products **4**.

3-(4-chlorophenyl)-13-methyl-7-phenyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6-one (**4**) Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 80:1 to 55:1); 77.1 mg, 71% yield; reaction time = 40 h; mp 224.6-225.4 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.80 (d, *J* = 8.0 Hz, 1H), 7.65 (s, 2H), 7.55-7.40 (m, 10H), 7.23 (t, *J* = 8.0 Hz, 1H), 7.13 (t, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 4.43 (q, *J* = 8.0 Hz, 1H), 1.76 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 151.7, 141.8, 138.9, 138.8, 138.4, 134.3, 133.8, 130.9, 130.6, 129.5, 129.4, 129.1, 128.4, 128.1, 127.8, 125.9, 125.2, 124.2, 122.5, 116.4, 115.6, 114.0, 113.6, 110.0, 35.6, 18.0. IR (KBr) *v* 3055, 2923, 2851, 1728, 1612, 1468, 1394, 1378, 1298, 1261, 1180, 1087, 1059, 1008, 974, 885, 741 cm⁻¹. HRMS (ESI) calcd for C₃₁H₂₁ClNO₂ [M+H]⁺ 474.1255, found 474.1238.

4. Experimental data for products 5

General procedure: Under nitrogen atmosphere, compound **3t** (81.2 mg, 0.18 mmol), 4chlorophenylboronic acid (1.5 equiv), Cs_2CO_3 (2.0 equiv), $Pd(OAc)_2$ (0.05 equiv) and butyl di-1adamantylphosphine (0.06 equiv) were successively added to a 15 mL dried tube, followed by adding 2.0 mL DME. The resulting mixture was stirred at 80 °C for 40 h till almost full consumption of **3n** monitored by thin layer chromatography, and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding products **5**.

7-(4'-chloro-[1,1'-biphenyl]-4-yl)-13-methyl-6*H*,13*H*-chromeno[4',3':3,4]pyrrolo[1,2-*a*]indol-6one (**5**)

Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 65:1 to 35:1); 71.2 mg, 84% yield; reaction time = 40 h; mp 236.8-237.5 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.71 (d, *J* = 8.0 Hz, 1H), 7.65 (s, 4H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 4.0 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.27-7.15 (m, 4H), 7.08 (t, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 4.36 (q, *J* = 8.0 Hz, 1H), 1.69 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 151.3, 141.9, 140.8, 138.9, 138.8, 134.5, 133.9, 131.5, 130.2, 129.1, 128.7, 128.5, 127.8, 127.3, 126.8, 126.0, 125.3, 124.0, 123.8, 117.6, 117.1, 114.5, 113.6, 110.3, 35.7, 18.0. IR (KBr) *v* 2926, 1725, 1608, 1550, 1464, 1413, 1391, 1350, 1080, 855, 752 cm⁻¹. HRMS (ESI) calcd for C₃₁H₂₁ClNO₂ [M+H]⁺ 474.1255, found 474.1258.

5. Crystal data for 31

Displacement ellipsoids are drawn at the 30% probability level.

Table S1. Crystal data and structure refinement for 31.				
Identification code	31			
Empirical formula	$C_{25}H_{16}FNO_2$			
Formula weight	381.39			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	C2/c			
Unit cell dimensions	a = 19.9398(17) Å	α= 90°.		
	b = 10.9448(10) Å	β=95.219(2)°.		
	c = 16.3541(14) Å	γ= 90°.		
Volume	3554.3(5) Å ³			
Ζ	8			
Density (calculated)	1.425 Mg/m ³			
Absorption coefficient	0.098 mm ⁻¹			
F(000)	1584			
Crystal size	0.450 x 0.380 x 0.320 mm ³			
Theta range for data collection	2.051 to 31.131°.			
Index ranges	-27<=h<=27, -15<=k<=15, -23<=l<=23			
Reflections collected	19608			
Independent reflections	5309 [R(int) = 0.0365]			
Completeness to theta = 25.242°	99.5 %			
Absorption correction	Semi-empirical from equivalents			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	5309 / 0 / 263			
Goodness-of-fit on F ²	0.982			
Final R indices [I>2sigma(I)]	R1 = 0.0535, wR2 = 0.1276			
R indices (all data)	R1 = 0.0715, $wR2 = 0.1380$			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.448 and -0.359 e.Å ⁻³			

6. Copies of ¹H NMR and ¹³C NMR spectra

