Fluorescence fiber-optic turn-on detection of trace hydrazine vapor with dicyanovinyl-functionalized triazatruxene-based hyperbranched conjugated polymer nanoparticles

Yuxiang Xu^{a,b}, Hua Li^{a,b}, Xiaofu Wu^a, Yonghong Chen^{a,c}, Hao Hang^{a,b}, Hui Tong^a*, Lixiang Wang^a*

^aState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^cUniversity of Science and Technology of China, Hefei 230026, P. R. China.

Supporting Information

Scheme S1. Synthesis of TAT-DCV.

Fig. S1 ¹H NMR spectra of TATHBP-H, TATHBP-CHO and TATHBP-DCV in CDCl₃.

Fig. S2 FT-IR spectra of TATHBP-H, TATHBP-CHO and TATHBP-DCV.

 $Fig. \ S3 \ TGA \ curves \ of \ TATHBP-H, \ TATHBP-CHO \ and \ TATHBP-DCV \ recorded \ under \ N_2 \ atmosphere.$

Fig. S4 Hydrodynamic diameters of **TATHBP-H** (a), **TATHBP-CHO** (b), and **TATHBP-DCV** (c) measured by dynamic light scattering.

Fig. S5 Images of TATHBP-H, TATHBP-CHO and TATHBP-DCV films coated on glass substrates under sunlight (left) and UV light(right).

Fig. S6 UV-vis absorption and PL spectra of TATHBP-H, TATHBP-CHO and TATHBP-DCV spin-coated films.

Fig. S7 PL spectra of spin-coated film of TATHBP-CHO on glass substrates before (solid) and after exposure to saturated hydrazine vapor for 12 hour (dash-dot).

Fig. S8 Two SEM images of the $\mathbf{TATHBP}\text{-}\mathbf{DCV}$ film coated on fiber-optic tip.

Fig. S9 Time-dependent fluorescence enhancement of TATHBP-DCV film coated on fiber-optic tip upon exposure to hydrazine vapor.

Fig. S10 Fluorescent enhancement of TATHBP-DCV coated fiber-optic tips upon exposure to hydrazine and other common interference vapors for 5 min.

Publication	Probe's chemical structure	Limit of Detection	Detection method
This work		1.1 mg/m ³ 0.01% solution (aq.)	Optic-fiber for 5 min based on fluorescence turn on detection
Adv. Mater. 2006 , 18, 1047-1050	P: X=Y=O(rr-C ₁₀ H ₂₁) P2: X=N(rr-C ₀ H ₁₇); Y=H P3: X=Y=N(rr-C ₀ H ₁₇);	100 ppb	Fido sensing platform based on fluorescence enhancement
Chem. Sci., 2013 , 4, 4121–4126	O O O O CF3 CF3	n.d.	TLC plates for 1.0 min based on fluorescence turn on detection at hydrazine vapor (9.0 mmHg)
<i>RSC Adv.</i> 2013 , 3, 17924-17929	$EtOOC \leftarrow S \leftarrow N \\ F \\ F \\ PBF_2$	n.d.	silica plates for a few minutes based on ratiometric fluorescence detection at hydrazine vapor (14.4 mmHg)
Anal. Chem. 2014 , 86, 4611–461	CF^{NH_2}	5.4 mg/m ³ 0.05% solution (aq.)	TLC plates for 10 min based on ratiometric fluorescence detection
Anal. Methods, 2014 ,6, 4705- 4709	H ₃ C ¹ O ^C O ^C CH ₃	0.4% solution (aq.)	Nylon 66 microporous membranes for 10 min based on fluorescence "switch-on" approach
Anal. Chem. 2015 , 87, 9101-9107	- 7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	0.1% solution (aq.)	filter papers for 15 min based on Near-Infrared fluorescence turn on detection
<i>Chem. Commun.,</i> 2014, 50, 1485- 1487		111.7 mg m ⁻³ 1% solution (aq.)	TLC plates for 10 min based on fluorescence turn on detection at hydrazine vapor

Table S1 A list of recently reported fluorescence sensors for detection of hydrazine vapor.

Fig. S11 Fluorescent images of TATHBP-DCV-coated filter papers after exposure to hydrazine vapor from aqueous hydrazine solutions with different hydrazine concentrations.

Fig. S12 ¹H NMR spectra of TAT-DCV and TAT-NH2 in THF-d₈.

Fig. S13 MALDI-TOF MS spectra of **TAT-DCV** (a) **and TAT-NH2** (b). MALDI-TOF MS (m/z) of **TAT-DCV**: Calcd. for $C_{72}H_{63}N_9$, [M]⁺: 1053.5; Found: 1053.5. MALDI-TOF MS (m/z) of **TAT-NH2**: Calcd. for $C_{63}H_{69}N_9$, [M]⁺: 951.6; Found: 951.6.

Fig. S14 Absorption spectral changes of TAT-DCV solution after addition of hydrazine hydrate.

Fig. S15 HOMO and LUMO of TAT-DCV calculated at the B3LYP/6-31G (d) level.

Fig. S16 HOMO and LUMO of TAT-NH2 calculated at the B3LYP/6-31G (d) level.

Molecular geometries of two model compounds for **TAT-DCV** and **TAT-NH2** were optimized using density functional theory at the B3LYP/6-31G(d) level. To simplify the calculation, the alkyl groups on the triazatruxene units are replaced by hydrogen atoms. Frequency calculations were performed at the B3LYP/6-31G(d) level. The isodensity coefficient used to illustrate the HOMO/LUMO is 0.02. All calculations were carried out using the Gaussian 03 suite of programs.

Fig. S17 UV-Vis Absorption spectrum of TAT-NH2 in THF.

Fig. S18 Absorption spectra of TATHBP-CHO (a) and TATHBP-DCV (b) in varying solvents.

Fig. S19 Emission spectra of TATHBP-CHO (a) and TATHBP-DCV (b) in varying solvents.