Supporting Information

Asymmetric Michael Addition in an Aqueous Environment with

the Assistance of Optically Active Hyperbranched Polymers

Hongli Zhang, Qijin Zhang, Chunyan Hong* and Gang Zou*

Author Affiliations

Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.

*Corresponding author. Email: gangzou@ustc.edu.cn; hongcy@ustc.edu.cn

Figure S1. ¹H NMR spectra recorded *in situ* for the reactions of POTC+DMPDA (molar feed ratio is 1:1.25) and thiol-click in DMSO-d6 under irradiation of ultraviolet-light, the time of irradiation is 0 min (a), 30 min (b), 300 min (c).

Table S1. Optically active HPBs prepared from pure L-POTC, D-POTC, and the mixture with various molar ration of L-POTC and D-POTC.

HPBs	n(L-POTC)/n(D-POTC) (molar feed ration)	specific rotation of the obtained HBPs (°)
HPBs-1	1/0	-8.1
HPBs-2	0.75/0.25	-3.9
HPBs-3	0.5/0.5	0
HPBs-4	0.33/0.67	2.6
HPBs-5	0.25/0.75	4.2
HPBs-6	0/1	8.3

Figure S2. ¹H NMR spectrum of the obtained hyperbranched polymers deviated from racemic POTC monomer.

Figure S3. Typical FT-IR spectra of (i) 1,2-ethanedithiol, (ii) quinine, (iii) HPBs-3 and (iv) HPBs-3-*co*-quinine (in KBr tablet).

Figure S4. (a) GPC curves and (b) The Mn, Mw, PDI and DB of six optically active HBPs.

Scheme S1. Synthesis route of HPBs-6-co-quinine.

Figure S5. UV-vis spectra of (i) quinine, (ii) HPBs-3 and (iii) HBPs-3-*co*-quinine in the acetonitrile solution.

Scheme S2. Schematically illustration of the asymmetric Michael addition reaction catalyzed by quinine.

Figure S6. ¹H NMR spectrum of the Michael adduct catalyzed by the quinine and HPBs-6, measured in CDCl₃ at room temperature.

Figure S7. ¹³C NMR spectrum of the Michael adduct catalyzed by the quinine and HPBs-6, measured in CDCl₃ at room temperature.

Figure S8. Typical FT-IR spectra of (i) 2-carbethoxycyclopentanone, (ii) N-benzylmaleimid and (iii) the Michael adduct catalyzed by quinine and HPBs-6 (in KBr tablet).

Figure S9. (a) UV-vis and (b) CD spectra of the Michael adduct catalyzed by the quinine and HPBs-6.

Figure S10. HPLC spectrum of the Michael adduct catalyzed by the quinine and HPBs-6 in dichloromethane.

References

[S1] G. Liu, G. Zhang, J. Hu, X. Wang, M. Zhu, S. Liu, J. Am. Chem. Soc., 2015, 137, 11645-11655.