Electronic Supplementary Information

Cation dependent charge transport in linear dicarboxylate based isotypical 1D coordination polymers

Faruk Ahmed,^a Joydeep Datta,^b Basudeb Dutta,^a Kaushik Naskar,^c Chittaranjan Sinha,^c Seikh Mafiz Alam,^a Suman Kundu,^d Partha Pratim Ray,^{* b} and Mohammad Hedayetullah Mir*^a

^aDepartment of Chemistry, Aliah University, New Town, Kolkata 700 156, India. Email: chmmir@gmail.com

^bDepartment of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India. Email: parthapray@yahoo.com

^cDepartment of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India.

^dDepartment of Chemistry, R. K. M. Residential College, Narendrapur, Kolkata 700 103, India.

Fig. S1 The structure of Device-a (or Device-b).

Fig. S2 A view of 3D supramolecular framework in compound 1.

Formula	$C_{26}H_{22}CdN_2O_6(1)$	$C_{26}H_{22}ZnN_2O_6(2)$			
fw	570.85	523.85			
cryst syst	triclinic	monoclinic			
space group	Pī	C2/c			
<i>a</i> (Å)	9.4482(9)	9.8479(4)			
<i>b</i> (Å)	10.0882(9)	27.7163(13)			
<i>c</i> (Å)	14.7102(13)	9.3837(4)			
α (deg)	72.942(3)	90			
β (deg)	82.840(3)	114.8410(10)			
γ (deg)	64.910(3)	90			
$V(Å^3)$	1213.95(19)	2324.28(18)			
Ζ	2	4			
$D_{\text{calcd}}(\text{g/cm}^3)$	1.562	1.497			
μ (mm ⁻¹)	0.944	1.103			
λ (Å)	0.71073	0.71073			
data $[I > 2\sigma(I)]$ /params	5903/333	2833/169			
GOF on F^2	1.135	1.069			
final <i>R</i> indices $[I > 2\sigma(I)]^{a,b}$	R1 = 0.0575	R1 = 0.0447			
	wR2 = 0.1518	wR2 = 0.1180			
${}^{a} \mathrm{R1} = \Sigma F_{o} F_{c} / \Sigma F_{o} , \ {}^{b} \mathrm{wR2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}.$					

Table S1Crystal data and refinement parameters for compounds 1 and 2

Cd(1)-O(3)	2.289(3)	Cd(1)-O(1)	2.306(3)
Cd(1)-O(5)a	2.292(3)	Cd(1)-N(2)	2.339(4)
Cd(1)-O(2)	2.301(3)	Cd(1)-N(1)	2.343(5)
O(3)-Cd(1)-O(5)a	178.18(11)	O(2)-Cd(1)-N(2)	84.15(14)
O(3)-Cd(1)-O(2)	90.83(12)	O(1)-Cd(1)-N(2)	83.23(14)
O(5)a-Cd(1)-O(2)	88.54(11)	O(3)-Cd(1)-N(1)	89.00(13)
O(3)-Cd(1)-O(1)	88.32(11)	O(5)a-Cd(1)-N(1)	89.38(13)
O(5)-Cd(1)-O(1)	92.67(12)	O(2)-Cd(1)-N(1)	96.41(13)
O(2)-Cd(1)-O(1)	167.32(14)	O(1)-Cd(1)-N(1)	96.23(13)
O(3)-Cd(1)-N(2)	91.87(14)	N(2)-Cd(1)-N(1)	178.96(14)
O(5)a-Cd(1)-N(2)	89.76(14)		

Table S2Selected bond lengths and bond angles in 1

Symmetry Code: a = x, -1+y, z

Table S3Selected bond lengths and bond angles in 2

Zn(1)-O(1)	2.104(2)	Zn(1)-O(2)a	2.139(2)
Zn(1)-O(1)a	2.104(2)	Zn(1)-N(1)	2.131(3)
Zn(1)-O(2)	2.139(2)	Zn(1)-N(2)	2.150(3)
O(1)-Zn(1)-O(2)	90.55(7)	N(1)-Zn(1)-O(1)a	93.36(5)
O(1)-Zn(1)-O(1)a	173.28(8)	N(2)-Zn(1)-O(2)a	89.79(5)
O(2)-Zn(1)-N(2)	89.79(5)	O(1)-Zn(1)-N(2)	86.64(5)
N(1)-Zn(1)-N(2)	180.00(3)	O(2)-Zn(1)-N(1)	90.21(5)
N(2)-Zn(1)-O(1)a	86.64(5)	O(2)-Zn(1)-O(2)a	179.59(7)
O(1)-Zn(1)-N(1)	93.36(5)	N(1)-Zn(1)-O(2)a	90.21(5)
O(1)-Zn(1)-O(2)a	89.42(7)	O(1)b-Zn(1)-O(2)a	90.55(7)
O(2)-Zn(1)-O(1)a	89.42(7)		

Symmetry Code: a = 1-x, y, 3/2-z

	D-H···A	D-H	H…A (Å)	$D \cdots A(Å)$	<d-h…a< th=""><th>Symmetry</th></d-h…a<>	Symmetry
		(Å)			(°)	
Compound	O(1)-H(1A)···O(5)	1.00(8)	1.69(8)	2.688(6)	173(8)	1-x,1-y,1-z
1	O(2)-H(2B)····O(3)	1.00(7)	1.72(7)	2.712(6)	178(8)	-x,1-y,1-z
Compound	O(1)-H(1B)····O(2)	0.88(4)	1.85(4)	2.727(3)	175(5)	-1/2+x,3/2-
2						y,-1/2+z

 Table S4 Intermolecular hydrogen bonding interactions in 1 and 2.

Table S5 C-H··· π interactions in 1 and 2.

	$C-H \rightarrow ring(j)$	H····R	C-H···R	C····R
		distance (Å)	angle(deg)	distance (Å)
Compound 1	$C(12)-H(12) \rightarrow R(1)$	3.375	157.27	4.248
	$C(16)-H(16)\rightarrow R(1)$	3.306	151.36	4.146
	$C(7)-H(7)\rightarrow R(2)$	3.188	151.81	4.031
	$C(8)-H(8)\rightarrow R(3)$	3.506	159.05	4.388
	$C(10)-H(10)\rightarrow R(3)$	3.382	152.12	4.225
	$C(11)-H(11) \rightarrow R(2)$	3.410	160.41	4.300
Compound 2	$C(8)$ -H(8) \rightarrow R(4)	3.251	155.02	4.112
	$C(5)-H(5) \rightarrow R(5)$	3.169	154.16	4.026
	$C(6)-H(6)\rightarrow R(6)$	3.409	155.52	4.272

R(j) denotes the j-th ring: R(1) = N(1)/C(1)/C(2)/C(3)/C(4)/C(5); R(2)= C(17)/C(18)/C(19)/C(20)/C(21)/C(22); R(3) = N(2)/C(12)/C(13)/C(14)/C(15)/C(16); R(4)= N(1)/C(1)/C(2)/C(3)/C(2)/C(1); R(5) = C(11)/C(12)/C(13)/C(14)/C(13)/C(12); R(6) = C(10)/C(9)/C(8)/N(2)/C(8)/C(9)

Fig. S3 TGA plots of compounds 1 (red) and 2 (green) measured under N_2 atmosphere.

Fig. S4 Powder X-ray diffraction patterns of simulated 1 (black) and as-synthesized 1 (red).

Fig. S5 Powder X-ray diffraction patterns of simulated 2 (black) and as-synthesized 2 (blue).

Fig. S6 FT-IR spectra of compound 1.

Fig. S7 FT-IR spectra of compound 2.