Supporting information

Investigations on the mechanism, kinetic and isotherm of ammonium and humic

acid co-adsorption at low temperature by 4A-molecular sieve modified from

attapulgite

Nan Sun^{a, *}, Wenxin Shi^b, Lixin Ma^c, Shuili Yu^{b, d, *}

^a School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China

^b State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

^c Department of Environmental Protection of Heilongjiang Province, Harbin 150090, China

^d State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China

* Corresponding author. Tel.: +86 21 65982708; fax: +86 21 65982708.

E-mail addresses: nan662001@163.com (Nan Sun), yu_shuili@163.com (Shuili Yu)

1. Determination of pH_{zpc} of 4A-molecular sieve

The pH_{zpc} of 4A-molecular sieve was determined by pH drift procedure, and the data was shown in Fig. S1. It can be seen from the Fig. S1, the pH_{zpc} of 4A-molecular sieve was around 4.11.

Fig. S1 Surface charge analysis of 4A-molecular sieve