Influence of tungsten on the NH₃-SCR activity of MnO₂ based catalysts

Lu peng, Li Huan, Liu Huayan, Chen Yinfei, Zhang zekai*

Department of Energy Chemical Engineering, Zhejiang University of Technology,

Chaowang Road 18, Hangzhou, 310014, China

E-mail of corresponding author: zzk@zjut.edu.cn

Table S1 The main peak's positions of characterization of Mn_aWO_x/TiO₂ systems by

samples	P1	P2	Р3	P4	P5	P6	P7	P8
MnO ₂ /TiO ₂ -SHS	230	300	390	460				
Mn ₅ WO _x /TiO ₂ -SHS	220	260	330	430	-	-	730	
Mn ₂ WO _x /TiO ₂ -SHS	220	260	330	430	-	-	750	
MnWO _x /TiO ₂ -SHS	-	-	-	-	-	-	800	
WO ₃ /TiO ₂ -SHS	-	-	-	-	520	650	820	

H₂-TPR method

Catalysts			H ₂ - c	onsumptio	n(mmol/g)			
	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7	Sum
WO ₃ /TiO ₂ -	-	-	-	-	0.68	0.62	0.53	1.83
SHS								
MnO_x/TiO_2 -	0.017	0.026	0.080	0.009	-	-	-	0.132
SHS								
MnWO _x /TiO	-	-	-	-	-	-	0.88	0.88
₂ -SHS								
Mn ₂ WO _x /Ti	0.22	0.13	0.12	0.19	-	-	0.58	1.24
O ₂ -SHS								
Mn ₅ WO _x /Ti	0.16	0.094	0.066	0.17	-	-	0.28	0.77
O ₂ -SHS								

Table S2 Quantitative analysis data of H2-TPR profiles

Table S3 elements distribution via EDX/TEM

Samples		Elements/(Mn:W		
	O(K)	Mn(K)	W(L)	Ti(K)	ratio
Mn ₂ WO _x -SHS	71.84	16.89	11.25	-	1.5
Mn ₂ WOx/TiO ₂ -SHS	66.72	1.80	2.35	29.10	0.8
Mn ₂ WO _x -CP	75.45	9.48	15.06	-	0.6
Mn ₂ WO _x /TiO ₂ -IMP	73.79	7.42	6.95	11.81	1.1

Samples		Elements/(Mn:W		
	O(K)	Mn(K)	W(L)	Ti(K)	ratio
MnWO _x -SHS	59.93	20.08	19.99	-	1.00
Mn ₂ WOx-SHS	57.72	27.93	14.36	-	1.94
Mn ₂ WO _x -CP	59.27	20.79	19.94	-	1.04
Mn ₂ WO _x /TiO ₂ -SHS	58.35	4.61	1.85	35.19	2.49

Table S4 elements distribution via EDS/SEM

TableS5. Bulk Mn_aWO_x catalysts via self-propagating high-temperature synthesis(SHS)

samples	molar ratio	metal salt precursor	The amout of
	of Mn to W		glycine
			(10times amout
			of metal-salts)
MnO ₂ -SHS	-	0.01 molMn(NO ₃) ₂ ·4H ₂ O	0.1mol
WO ₃ -SHS	-	$0.001 mol(NH_4)_{10}W_{12}O_{41} \cdot xH_2O$	0.01mol
MnWO _x -SHS	1:1	$0.006 \text{molMn}(\text{NO}_3)_2 \cdot 4 \text{H}_2\text{O}$	0.065mol
		$+0.0005 mol(NH_4)_{10}W_{12}O_{41}$ ·xH ₂ O	
Mn ₂ WO _x -SHS	2:1	0.012 molMn(NO ₃) ₂ ·4H ₂ O	0.125mol
		$+0.0005 mol(NH_4)_{10}W_{12}O_{41}$ ·xH ₂ O	
Mn ₅ WO _x -SHS	5:1	0.012 molMn(NO ₃) ₂ ·4H ₂ O	0.122mol
		$+0.0002 mol(NH_4)_{10}W_{12}O_{41} \cdot xH_2O$	
Mn ₁₀ WO _x -SHS	10:1	$0.012 \text{mol} \text{Mn}(\text{NO}_3)_2 \cdot 4 \text{H}_2 \text{O}$	0.121mol
		$+0.0001 mol(NH_4)_{10}W_{12}O_{41} \cdot xH_2O$	

TableS6. The supported Mn_aWO_x/TiO_2 catalysts via self-propagating high-temperature synthesis(SHS), The loading amount of active components is kept at 20wt%.

samples	molar ratio	The amout of metal salt	The amout of
	of Mn to W	precursor	glycine(three times of
			the total amout of
			metal-salts and TiO_2)
MnO ₂ /TiO ₂ -	-	0.00431molMn(NO ₃) ₂ ·4	0.0692mol
SHS		H ₂ O+1.5gTiO ₂	
WO ₃ /TiO ₂ -	-	0.000131mol(NH ₄) ₁₀ W ₁₂	0.0567mol
SHS		O_{41} ·xH ₂ O+1.5gTiO ₂	
MnWO _x /TiO ₂ -	1:1	0.00157molMn(NO ₃) ₂ ·4	0.0613mol
SHS		H ₂ O+0.000131mol(NH ₄)	
		$_{10}W_{12}O_{41}$ ·xH ₂ O+1.5gTiO	
		2	
Mn ₂ WO _x /TiO ₂	2:1	0.00256molMn(NO ₃) ₂ ·4	0.0643mol
-SHS		H ₂ O+0.000107mol(NH ₄)	
		$_{10}W_{12}O_{41}$ ·xH ₂ O+1.5gTiO	
		2	
Mn ₅ WO _x /TiO ₂	5:1	0.00408molMn(NO ₃) ₂ ·4	0.0685mol
-SHS		H ₂ O+0.68*10 ⁻	
		⁵ mol(NH ₄) ₁₀ W ₁₂ O ₄₁ ·xH ₂	
		O+1.5gTiO ₂	
Mn ₁₀ WO _x /TiO	10:1	0.00511molMn(NO ₃) ₂ ·4	0.0716mol
₂ -SHS		H ₂ O+0.426*10 ⁻	
		⁵ mol(NH ₄) ₁₀ W ₁₂ O ₄₁ ·xH ₂	

	O+1.5 gTiO ₂	
--	-------------------------	--

TableS7. The supported $MnWO_x/TiO_2$ catalysts via impregnation method (the loading amount of active components is kept at 20wt%)

samples	molar ratio	metal salt precursor
	of Mn to W	
MnWO _x /TiO ₂ -	1:1	$0.00209 \text{molMn}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O} + 0.000174 \text{mol}($
IMP		$NH_4)_{10}W_{12}O_{41}$ ·x H_2O +2gTi O_2
Mn ₂ WO ₃ /TiO ₂ -	2:1	0.0034molMn(NO ₃) ₂ ·4H ₂ O+
IMP		$0.000142 mol(NH_4)_{10}W_{12}O_{41} \cdot xH_2O + 2gTiO_2$

TableS8. The $MnWO_x$ catalysts via Co-precipitation synthesis

method

samples	molar ratio	metal salt precursor
	of Mn to W	
MnWO _x -CP	1:1	0.01molMnCl ₂ · 4H ₂ O+0.01molNa ₂ WO ₄ ·2H ₂ O
Mn ₂ WO _x -CP	2:1	0.02molMnCl ₂ • 4H ₂ O+0.01molNa ₂ WO ₄ • 2H ₂ O

Fig.S1 EDX patterns of the bulk and supported Mn_aWO_x catalysts with different

preparation methods

Fig.S2 W4f XPS spectra of MnWOx-CP, MnWOx/TiO₂-IMP, Mn₂WOx-SHS and Mn₂WOx/TiO₂-SHS

The resistance to SO₂ and H₂O is an important property besides the activity for catalysts. The H₂O and SO₂ in exhaust fumes can induce the deactivation and poisoning of catalyst. Therefore, the influence of H₂O and SO₂ on NO conversion by Mn₂WOx/TiO₂-SHS at 200 °C and 260 °C was investigated.10 vol% H₂O was added to the system, the NO_x conversion of Mn₂WOx/TiO₂-SHS showed a notable deactivation on NO reduction at 200 °C .However, NO conversion slightly decreased from 99% to 98% at 260 °C.After 3.5h(200 °C) or 8h(260 °C), when H₂O was removed from the flue gas, NO conversion nearly recovered to original levels. This result indicated that the decrease in activity brought about by H₂O might be caused by its competitive adsorption between with NH₃ and NO_x on the active sites over the catalyst surface.

In the presence of 100ppm SO₂ at 200 °C and 260 °C, the NO conversion of Mn_2WOx/TiO_2 -SHS decreased from the initial 100% to 72% in 3.5 h and 100% to 80% in 8h respectively. After the removal of SO₂, NO conversion over Mn_2WOx/TiO_2 -SHS partly recovered to 80% and 85%. The coexistence of 100 ppm SO₂ and 5 vol.% H₂O notablely induced decrease of NO conversion at both 200 °C and 260 °C. After swiching off SO₂ and H₂O, the NO conversion was recovered with a sharp increase from 65% to 70% and 70% to 80%. It can be speculated that some ammonium sulfates or ammonium bisulfate may be formed by the reaction between SO₂ and the reactants (NH₃, H₂O and O₂) and the formed sulfates can occupy the active sites or deposit on the surface of the catalyst.

Fig.S3 The H₂O and SO₂ resistance of Mn_2WO_x/TiO_2 -SHS Reaction conditions: H₂O=10% or SO₂=100ppm, GHSV=30000h⁻¹

In order to investigate the effects of W species in Mn_aWOx/TiO_2 catalyst, the separate NH₃ oxidation (NH₃ + O₂) experiments were also carried out (Fig.S4). The NH₃ oxidation ability may directly affect NH₃-SCR activity in the high temperature range. The NH₃ oxidation ability of MnWOx/TiO₂ is obviously lower than that of MnO_x/TiO₂, increasing the ratio of Mn/W results in the increase of the NH₃ oxidation ability ,which means that a suitable addition of W could inhibit the unselective oxidation of NH₃ and thus promote the high temperature activity. Considering the XRD pattern and SCR activity, the MnWO_x/TiO₂ only presents the characteristic peaks of MnWO₄ and TiO₂, but the MnWO₄ and Mn₃O₄ disappears together on the patterns of Mn₂WO_x/TiO₂ and Mn₅WO_x/TiO₂. The results suggest that the exitance of MnWO₄ crystalline phase may be beneficial to the enhancement of N₂ selectivity in NH₃-SCR reaction. When the ratio of Mn/W exceed 1, amorphous Mn_3O_4 destroy the exitance of MnWO₄ crystalline phase, resulting in weaker NH₃ adosorption and higher NH₃ unselective oxidation.

Fig.S4 NH₃ conversions during separate NH₃ oxidation reaction over MnO_x/TiO_2 and Mn_aWOx/TiO_2 catalysts. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol.%, N₂ balance and GHSV 30,000 h⁻¹.

The NO₂ production in the separate NO oxidation reaction over Mn_aWO_x/TiO_2 is obviously higher than that over bulk Mn_aWO_x in the low temperature range of 50- 200 °C. However, considering XPS analysis in Fig.9 and Table4, surface absorbed O_{α} ratio of bulk Mn_aWO_x is higher than the supported catalysts. The results indicate that some other important changes (such as the exitance and increase of $MnWO_4$ crystallite, and surface acid sites) but not the changes of O_{α} ratio induced by the addition of carrier caused the enhancement of low temperature NO oxidation ability. However, the inhibited high temperature oxidation of NH₃ over Mn_2WO_x/TiO_2 –SHS might be also associated with the low O_{α} ratio besides the influence of $MnWO_4$ crystalline phase.

Fig.S5 NO conversions during separate NO oxidation reaction over Mn_aWO_x and Mn_aWO_x/TiO_2 catalysts. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol.%, N₂ balance and GHSV 30,000 h⁻¹.