Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

SUPPLEMENTARY INFORMATION

Analytical method for metabolites involved in biosynthesis of plant volatile compounds

Xiumin Fu^{a, #}, Ying Zhou^{a, #}, Lanting Zeng^a, Fang Dong^b, Xin Mei^a, Yinyin Liao^a, Naoharu Watanabe^c and Ziyin Yang^{a, *}

a. Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China

^{b.} Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China

^{c.} Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan

Co-first authors.

*Corresponding author. Ziyin Yang, Tel: +86-20-38072989, Email address: zyyang@scbg.ac.cn.

Metabolites		Analysis methods	Advantage	Disadvantage	Ref
1 Metabolites involved in glycolysis and pentose phosphate pathway	G6P F6P FBP	Spectrophotometer analysis	• low cost and easy analysis	• imprecision	S1, S2, S3, S4, S5, S6
FF Fj	PEP Pyr 3PG	GC-MS	high sensitivityhigh reliability	• requirement for derivatization	
	2PG DHAP GAP 3PG+2PG 1,3-PBG	LC-MS	• wide analytical range of metabolites	 lower reproducibility of retention times lower accurate quantification 	
		CE-MS	 small quantity of sample without derivatization step high mass accuracy and resolution 	 f poor migration time reproducibility lack of reference libraries 	
② Metabolites involved in formation of volatile phenylpropanoids/benze noids	orgainc acid 3-deoxy-arabino-heptulonate 7- phosphate 3-dehydroquinic acid 3-dehydroshikimic acid shikimic acid shikimate 3-phosphate 5-enolpyruvylshikimate-3-phosphate (EPSP) chorismic acid prephenic acid	GC-MS S2	• high sensitivity	• requirement for derivatization	S7, S8, S9, S10

Supplemental Table S1 The methods for analysis of metabolites involved in biosynthesis of plant volatile compounds

	phenylpyruvate <i>trans</i> -cinnamic acid <i>para</i> -coumaric acid 3-hydroxy-3-phenylpropionic acid	HPLC-PDA	 low cost and easy analysis direct analysis 	limited compounds detectedpoor separation	
	L-phenylalanine phenolic acid conjugated coenzyme A <i>trans</i> -cinnamoyl CoA 3-hydroxy-3-phenylpropionyl CoA	HPLC-MS	• direct analysis	• requirement for sample clean-up	
	3-oxo-3-phenylpropionyl CoA	CE-MS	 simple extraction process short analytical time small quantity of sample 	• lower sensitivity	
3 Metabolites involved in formation of volatile fatty acid derivatives	es involved in of volatile fatty atives unsaturated fatty acid linoleic acid linolenic acid saturated fatty acid	GC	 high sensitivity short analytical time 	 lower accurate quantitative requirement for derivatization time-consuming 	S11, S12, S13, S14, S15
		HPLC	• accurate quantitative analysis	 poor retention time reproducibility requirement for derivatization time-consuming 	

			LC-MS	without derivatization step	•	requirement for MS equipment	
		13-Hydroperoxylinolenic acid (12, 13S)-epoxylinolenic acid octadecanoid 12-oxo-phytodienoic acid Jasmonic acid	GC-MS	high sensitivitydirect analysis	•	requirement for derivatization unavailable of internal standards	S16, S17, S18, S19
4	Glycosidically bound volatile compounds	Depend on plant species, such as glycosides constituting aglycons of the 3-hexenol, benzyl alcohol, 2- phenylethanol, methyl salicylate, geraniol and linalool	GC-MS	• easy to identify the structures of aglycone	•	requirement for derivatization hard to identify the sugar residues	S20, S21, S22
			LC-MS	• direct analysis	•	hard to obtain internal standards more purification steps	
5	Metabolites involved in formation of carotenoid derived aroma compounds	Phytoene Lycopene β-carotene δ-carotene	LC-PDA	 well separation fast detection of known carotenoid compounds 	•	complex elution gradient program long analysis time	S23, S24
			UPLC-MS	 reduction in analysis time and mobile phase solvent 	•	poor separation requirement for MS equipment	

				•	consumption identification for unknown carotenoids			
6	Metabolites involved in formation of volatile isoprenoids	DMAPP GPP FPP GGPP	CE	•	well separating isoprenoids direct analysis	•	lower sensitivity	825, S26
			HPLC-MS	•	high sensitivity			
				•	direct detection			

References

S1. Y. C. Du, A. Nose, K. Wasano and Y. Uchida, Funct. Plant Biol., 1998, 25, 253.

S2. R. C. Leegood and R. T. Furbank, Planta, 1984, 162, 450.

S3. H. Usuda, M. Ku and G. Edwards, Funct. Plant Biol., 1984, 11, 509.

S4. J. Lisec, N. Schauer, J. Kopka, L. Willmitzer and A. R. Fernie, Nat. Protocols, 2006, 1, 387.

S5. H. Yamakawa and M. Hakata, Plant and Cell Physiol., 2010, 51, 795.

S6. B. Luo, K. Groenke, R. Takors, C. Wandrey and M. Oldiges, J. Chromatogr. A, 2007, 1147, 153.

S7. P. Oliveira, J. A. Pereira, P. B. Andrade, P. Valentão, R. M. Seabra and B. M. Silva, Food Chem., 2008, 111, 393.

S8. Magnes, M. Suppan, T. R. Pieber, T. Moustafa, M. Trauner, G. Haemmerle and F. M. Sinner, Anal. Chem., 2008, 80, 5736.

S9. Mardones, A. Hitschfeld, A. Contreras, K. Lepe, L. Gutiérrez and D. von Baer, J. Chromatogr. A, 2005, 1085, 285.

S10. W. Klampfl, W. Buchberger and P. R. Haddad, J. Chromatogr. A, 2000, 881, 357.

S11.B. Qi, T. Fraser, S. Mugford, G. Dobson, O. Sayanova, J. Butler, J. A. Napier, A. K. Stobart and C. M. Lazarus, Nat. Biotech, 2004, 22, 739.

S12. J. Browse, P. J. McCourt and C. R. Somerville, Anal. Biochem., 1986, 152, 141.

S13. S.H. Chen and Y.-J. Chuang, Anal. Chim. Acta, 2002, 465, 145.

S14. T. Řezanka, J. High. Resolut. Chromatogr., 2000, 23, 338

S15. A. Carrier and J. Parent, J. Liq. Chromatogr. Rel. Technol., 2001, 24, 97.

- S16. A. Müller, P. Düchting and E. W. Weiler, Planta, 2002, 216, 44.
- S17. M. J. Mueller and W. Brodschelm, Anal. Biochem., 1994, 218, 425.
- S18. B. A. Stelmach, A. Müller, P. Hennig, D. Laudert, L. Andert and E. W. Weiler, *Phytochemistry*, 1998, 47, 539.
- S19. M. O. Funk, R. Isaac and N. A. Porter, Lipids, 1976, 11, 113.
- S20. Y. Zhou, F. Dong, A. Kunimasa, Y. Zhang, S. Cheng, J. Lu, L. Zhang, A. Murata, F. Mayer, P. Fleischmann, N. Watanabe and Z. Yang, J. Agric. Food Chem., 2014, 62, 8042.
- S21. C. C. Chyau, P. T. Ko, C. H. Chang and J. L. Mau, Food Chem., 2003, 80, 387.
- S22. Y. Z. Gunata, C. L. Bayonove, R. L. Baumes and R. E. Cordonnier, J. Chromatogr. A, 1985, 331, 83.
- S23. P. D. Fraser, M. E. Pinto, D. E. Holloway and P. M. Bramley, *Plant J.*, 2000, 24, 551.
- S24. B. Y. Hsu, Y. S. Pu, B. S. Inbaraj and B. H. Chen, J. Chromatogr. B, 2012, 899, 36.
- S25. G. Nürenberg and D. A. Volmer, Anal. Bioanal. Chem., 2012, 402, 671.
- S26. L. Henneman, A. G. van Cruchten, S. W. Denis, M. W. Amolins, A. T. Placzek, R. A. Gibbs, W. Kulik and H. R. Waterham, Anal. Biochem., 2008, 383, 18.