Supporting Information

Synthesis of Fused Tricyclic Indolizines by Intramolecular Silver-Mediated Double Cyclization of 2-(Pyridin-2-yl)acetic Acid Propargyl Esters

Hai-Yuan Zhao, Ying-chun Wang, Xiao-Lin Cao, Qiu-Fang Pang, Heng-shan Wang* and Ying-ming Pan*

Table of Contents

Experimental									
General methods and materials									
General	procedure	for	the	synthesis		of	substrate		
1a		S2	General	Procedure	of	synthesis	of	fused	
tricyclic ind	lolizine 2		S2						
Determination of optical rotation of 2h								S3	
Chiral HPLC experiments							S3		
ESI/MS exp	oeriments						•••••	S5	
Spectral data of all compounds							S6		
Copies of ¹ H NMR and ¹³ C NMR spectra of all compounds							S13		

Experimental

General methods and materials.

Proton nuclear magnetic resonance spectra (¹H NMR) and carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 400 MHz and 100 MHz, respectively, using CDCl₃ as reference standard (δ 7.26 ppm) for ¹H NMR and (δ 77.04 ppm) for ¹³C NMR. HRMS (ion trap) were recorded using APCI or ESI. Melting points were uncorrected. Precoated silica gel plates F-254 were used for analytical thin-layer chromatography. Column chromatography was performed on silica gel (300-400 mesh). The enantiomeric excesses were determined by Agilent-1200 series HPLC system using a chiral stationary phase column. (column: CHIRALCEL OD-H, eluent: 2-propanol/*n*-hexane=5/95). Starting materials were readily prepared according to literature procedures. Unless otherwise noted, all reagents were obtained commercially and used without further purification.

General procedure for the synthesis of substrate 1a

Following a modified procedure from B. Sahoo et al., triethyl amine (0.15 mL, 1.1 mmol) and 1,3-dicyclohexylcarbodiimide (DCC) (0.21 g, 1 mmol), 4- (dimethylamino)pyridine (DMAP) (6.1 mg, 0.05 mmol) were added to a suspension of 2-pyridylacetic acid hydrochloride (0.173 g, 1 mmol) and prop-2-yn-1-ol (0.056 g, 1 mmol) in toluene (10 mL) at 60 °C. The reaction mixture was stirred 4 h at 60 °C. The reaction mixture was filtered to remove 1,3-dicyclohexylurea. The filtrate was washed with water (3×10 mL), dried with MgSO₄ and concentrated under reduced pressure, the crude product was purified by column chromatography on silica gel using a mixture of ethyl acetate and petroleum ether to afford **1a** as a light yellow oil.

General procedure for the synthesis of fused tricyclic indolizine 2

Substrate 1 (0.5 mmol) were added to a suspension of Ag_2CO_3 (0.276 g, 2 equiv.) and KOAc (0.098g, 2 equiv.) in toluene (2.0 mL). The reaction mixture was allowed to stir at 100 °C for 6 h in a sealed tube. The resulting solution was cooled and

evaporated under reduced pressure. The target product **2** was purified by column chromatography on silica gel using a mixture of ethyl acetate and petroleum ether.

Determination of optical rotation of 2h

2h (9.3 mg) was dissolved in 3.10 mL MeOH (AR): 0.3 g/100 mL, 20 °C.

ESI/MS experiments

Under the standard condiction, a mixture of **1a** (0.5 mmol), Ag_2CO_3 (0.276 g, 2 equiv.) and KOAc (0.098g, 2 equiv.) in toluene (1 mL) was reacted at 100 °C for 30 min and 50 µL of the mixture was used for the ESI analysis in CH₃CN.

Spectral data of all compounds

prop-2-vn-1-vl 2-(pyridin-2-vl)acetate (1a) Light yellow oil; ¹**H** NMR (400 MHz, CDCl₃): δ 8.53 (dd, J = 4.9, 0.8 Hz, 1H), 7.67–7.62 (m, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.22–7.07 (m, 1H),

4.71 (t, J = 3.9 Hz, 2H), 3.88 (d, J = 5.1 Hz, 2H), 2.54 (t, J = 2.5 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 169.7, 153.8, 149.4, 136.6, 123.8, 122.2, 75.2, 52.3, 43.4 ppm; **HRMS** (m/z) (ESI): calcd for C₁₀H₇NO₂ 176.0706 [M+H⁺]; found 176.0699.

but-3-yn-2-yl 2-(pyridin-2-yl)acetate (1e) light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.39 (dd, J = 4.8, 0.7 Hz, 1H), 7.50 (m, 1H), 7.15 (d, J = 7.8 Hz, 1H), 7.03 (m, 1H), 5.34 (m, 1H),

3.72 (s, 2H), 2.37 (d, J = 2.2 Hz, 1H), 1.35 (d, J = 6.7 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 169.0, 153.6, 149.0, 136.3, 123.5, 121.8, 81.5, 73.0, 60.2, 43.2, 20.8 ppm; HRMS (m/z) (ESI): calcd for C₁₁H₁₂NO₂ 190.0863 [M+H+]; found 190.0859.

(S)-but-3-yn-2-yl 2-(pyridin-2-yl)acetate (1f) Light yellow oil; e.e = 99.0%; $[\alpha]^{20}D = -55^{\circ}$ (c = 0.3, MeOH); ¹H NMR (400 MHz, CDCl₃): δ 8.38 (dd, J = 4.8, 0.7 Hz, 1H), 7.49 (m, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.02 (m, 1H), 5.33 (qd, J = 6.7, 2.1 Hz, 1H), 3.71 (s, 2H), 2.37 (d, J = 2.2 Hz, 1H), 1.34 (d, J = 6.7 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 169.3, 153.9, 149.3, 136.6, 123.8, 122.1, 81.8, 73.3, 60.5, 43.5, 21.1 ppm. HRMS (m/z) (ESI): calcd for C₁₁H₁₂NO₂ 190.0863 [M+H⁺]; found 190.0859; RT = 21.65 min. (Chiral HPLC, CHIRALCEL OD-H -column and using 5% isopropanol mixture in hexane as eluent, Flow rate: 0.5 mL/min)

1H,3H-furo[3,4-a]indolizin-1-one (2a) White solid, m.p. 120-123 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 7.0 Hz, 1H), 7.82 (d, J = 8.9 Hz, 1H), 7.16 (s, 1H), 7.12-7.10 (m, 1H), 6.83-6.82 (m, 10.10 H), 6.83-6.82 (m, 10.1H), 5.30 (d, J = 0.8 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 138.8, 129.6, 126.6, 122.5, 118.4, 113.6, 104.1, 103.9, 65.8 ppm; **HRMS** (*m/z*) (APCI): calcd for C₁₀H₇NO₂ 174.0550 [M+H⁺]; found 174.0544

3,3,7-trimethyl-1*H***,3***H***-furo[3,4-a]indolizin-1-one (2b)** Light yellow solid, m.p. 131-133 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 1.1 Hz, 1H), 7.60 (d, *J* = 9.0 Hz, 1H), 6.97 (s, 1H), 6.87 (dd, *J* = 9.0, 1.3 Hz, 1H), 2.23 (d, *J* = 0.6 Hz, 1H), 1.59 (s,

2H) ppm; ¹³C **NMR** (100 MHz, CDCl3): δ 165.9, 147.4, 128.0, 125.7, 124.6, 123.2, 117.7, 103.5, 102.7, 82.0, 28.2, 18.3 ppm; **HRMS** (*m/z*) (ESI): calcd for C₁₃H₁₄NO₂ 216.1019[M+H⁺]; found 216.1010.

3,3,6-trimethyl-1*H***,3***H***-furo[3,4-a]indolizin-1-one (2c)** Light yellow solid; m.p. 144-146 °C;¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, *J* = 8.9 Hz, 1H), 7.06 (dd, *J* = 8.8, 6.9 Hz, 1H), 7.00 (s, 1H), 6.68 (d, *J* = 6.9 Hz, 1H), 2.57 (s, 3H), 1.67 (s, 6H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ 165.9, 147.6, 135.0, 129.8, 122.7, 115.8, 112.9, 104.2,
99.9, 82.0, 28.1, 19.1 ppm; HRMS (*m/z*) (ESI): calcd for C₁₃H₁₄NO₂ 216.1019
[M+H⁺] found 216.1019.

6-methoxy-3,3-dimethyl-1*H***,3***H***-furo[3,4-***a***]indolizin-1-one (2d) White solid, m.p. 142-143 °C; ¹H NMR (400 MHz, CDCl₃): \delta 7.36 (d, J = 8.8 Hz, 1H), 7.18 (s, 1H), 7.12–6.95 (m, 1H), 6.10 (d, J = 7.4 Hz, 1H), 4.05 (s, 3H), 1.63 (s, 6H) ppm; ¹³C NMR (100 MHz,**

CDCl₃): δ 166.0, 149.6, 146.9, 130.6, 124.4, 110.3, 103.8, 98.3, 89.4, 82.0, 56.5, 28.2 ppm; **HRMS** (*m/z*) (ESI): calcd for C₁₃H₁₄NO₃ 232.0974. [M+H⁺]; found 232.0974.

7-bromo-3,3-dimethyl-1*H***,3***H***-furo[3,4-***a***]indolizin-1-one (2e) White solid, m.p. 180-183 °C; ¹H NMR (400 MHz, CDCl₃): \delta 8.23 (s, 1H), 7.62 (d,** *J* **= 9.4 Hz, 1H), 7.15 (s, 1H), 7.08 (dd,** *J* **= 9.4, 1.6 Hz, 1H), 1.63 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃):** δ 165.4, 148.0, 127.2, 126.8, 125.7, 118.7, 108.1, 105.1, 103.8, 82.3, 28.1 ppm; **HRMS** (*m/z*) (ESI): calcd for $C_{12}H_{11}BrNO_2$ 279.9968 281.9947 [M+H⁺]; found 279.9968 281.9949.

3,3-dimethyl-7-(trifluoromethyl)-1H,3H-furo[3,4-

a]indolizin-1-one (2f) Light yellow solid; m.p. 152-155 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.84 (d, *J* = 9.3 Hz, 1H), 7.33 (s, 1H), 7.18 (d, *J* = 9.3 Hz, 1H), 1.67 (s, 6H)

ppm; ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 148.6, 128.6, 125.7 (q, *J* = 3.9 Hz), 123.3 (q, *J* = 270.0 Hz), 118.8, 117.9, 117.5 (q, *J* = 35.5 Hz), 105.9, 105.2, 82.4, 27.9 ppm. **HRMS** (*m/z*) (APCI): calcd for C₁₃H₁₁F₃NO₂ 270.0736 [M+H⁺]; found 270.0735.

3-methyl-1*H***,3***H***-furo[3,4-***a***]indolizin-1-one (2g) White solid, m.p. 136-137 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.09–8.07 (m, 1H), 7.76 (d,** *J* **= 8.9 Hz, 1H), 7.13 (s, 1H), 7.07–7.05 (m, 1H), 6.80–6.79 (m, 1H), 5.60–5.54 (m, 1H),**

1.60 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 143.7, 129.3, 126.8, 122.6, 118.4, 113.6, 104.0, 103.9, 74.2, 21.5 ppm; HRMS (*m/z*) (ESI): calcd for C₁₁H₁₀NO₂ 188.0712 [M+H⁺]; found 188.0706.

(*S*)-3-methyl-1*H*,3*H*-furo[3,4-*a*]indolizin-1-one (2h) Light yellow oil; e.e = 99.0%; $[\alpha]^{20}D = -55^{\circ}$ (c = 0.3, MeOH); ¹H NMR (400 MHz, CDCl₃): δ 8.38 (dd, J = 4.8, 0.7 Hz, 1H), 7.49 (m, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.02 (m, 1H), 5.33 (m, 1H),

3.71 (s, 2H), 2.37 (d, J = 2.2 Hz, 1H), 1.34 (d, J = 6.7 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 169.3, 153.9, 149.3, 136.6, 123.8, 122.1, 81.8, 73.3, 60.5, 43.5, 21.1 ppm. HRMS (*m/z*) (ESI): calcd for C₁₁H₁₂NO₂ 190.0863 [M+H⁺]; found 190.0859; RT = 21.65 min. (Chiral HPLC, CHIRALCEL OD-H -column and using 5% isopropanol mixture in hexane as eluent, Flow rate: 0.5 mL/min)

3,3-dimethyl-1*H***,3***H***-furo**[**3,4***-a*]**indolizin-1-one** (**2i**) Light yellow solid, m.p. 121-123 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.09 (d, *J* = 7.0 Hz, 1H), 7.70 (d, *J* = 8.9 Hz, 1H), 7.15 (s, 1H), 7.05–7.01 (m, 1H), 6.78–6.76 (m, 1H), 1.62 (s, 6H) ppm; ¹³C

NMR (100 MHz, CDCl₃): δ 165.9, 147.3, 129.2, 127.0, 122.7, 118.2, 113.5, 103.7, 103.3, 82.1, 28.1 ppm; **HRMS** (*m/z*) (APCI): calcd for C₁₂H₁₂NO₂ 202.0868 [M+H⁺]; found 202.0856.

3-pentyl-1*H***,3***H***-furo[3,4-***a***]indolizin-1-one (2j) Light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (dt,** *J* **= 7.0, 1.0 Hz, 1H), 7.78 (d,** *J* **= 8.9 Hz, 1H), 7.13 (s, 1H), 7.10–7.04 (m, 1H),**

6.82–6.79 (m, 1H), 5.44 (t, J = 6.6 Hz, 1H), 1.97–1.73 (m, 2H), 1.48 (ddd, J = 13.1, 7.7, 4.0 Hz, 2H), 1.37–1.24 (m, 5H), 0.90–0.82 (m, 4H) ppm; ¹³**C NMR** (100 MHz, CDCl₃): δ 166.7, 142.5, 129.3, 126.7, 122.5, 118.4, 113.5, 104.4, 104.1, 78.0, 35.2, 31.51 (s), 24.4, 22.5, 14.0, 13.9 ppm; **HRMS** (*m*/*z*) (ESI): calcd for C₁₅H₁₈NO₂ 244.1338 [M+H⁺]; found 244.1333.

1*'H*-spiro[cyclopentane-1,3'-furo[3,4-*a*]indolizin]-1'-one (2k) White solid, m.p. 126-128 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.06 (d, *J* = 6.9 Hz, 1H), 7.76 (d, *J* = 8.9 Hz, 1H), 7.11 (s, 1H), 7.09–7.04 (m, 1H), 6.78 (dd, *J* = 9.8, 3.9 Hz, 1H), 2.20 (dd, *J* =

10.7, 4.3 Hz, 2H), 2.08–1.97 (m, 4H), 1.95–1.78 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 166.0, 145.3, 129.2, 126.7, 122.5, 118.4, 113.4, 104.7, 103.0, 91.8, 77.3, 77.1, 76.8, 39.9, 24.4 ppm; **HRMS** (*m/z*) (APCI): calcd for C₁₄H₁₄NO₂ 228.1025 [M+H⁺]; found 228.1009.

3-(1-phenylethyl)-1*H***,3***H***-furo**[**3**,**4***-a*]**indolizin-1-one** (21) White solid, m.p. 142-144 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 7.80 (d, *J* = 7.0 Hz, 1H), 7.67 (d, *J* = 8.9 Hz, 1H), 7.31–7.13 (m, 6H), 7.03–6.88 (m, 1H), 6.67 (m, 1H), 6.14 (s, 1H), 5.41 (d, J = 8.9 Hz, 1H), 2.86 (m, 1H), 1.46 (d, J = 6.9 Hz, 3H) ppm; ¹³C **NMR** (100 MHz, CDCl₃): δ 165.40, 140.79, 139.98, 128.08, 127.5, 127.1, 127.0, 126.2, 125.5, 121.4, 117.3, 112.4, 103.9, 103.3, 80.7, 44.4, 17.7 ppm; **HRMS** (*m/z*) (ESI): calcd for C₁₈H₁₆NO₂ 278.1181 [M+H⁺]; found 278.1174.

3-(4-chlorophenyl)-1*H***,3***H***-furo[3,4-***a***]indolizin-1-one (2m) White solid, m.p. 155-157 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.08–8.06 (m, 1H), 7.89–7.80 (m, 1H), 7.32 (s, 4H), 7.17–7.10 (m,**

2H), 6.85–6.84 (m, 1H), 6.42 (d, J = 1.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 141.6, 136.3, 134.8, 129.5, 129.0, 128.2, 126.9, 123.1, 118.60, 113.9, 104.8, 103.9, 77.9 ppm; HRMS (*m/z*) (APCI): calcd for C₁₆H₁₁ClNO₂ 284.0478 [M+H⁺]; found 284.0461.

3-(4-bromophenyl)-1*H***, 3***H***-furo[3,4-***a***]indolizin-1-one (2n) White solid, m.p. 116-117 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.00–7.99 (m, 1H), 7.79 (d,** *J* **= 9.0 Hz, 1H), 7.49–7.36 (m, 2H), 7.25–7.14 (m, 2H), 7.12–7.00 (m, 2H), 6.79–6.78 (m, 1H), 6.35**

(s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) : δ 164.8, 140.5, 135.8, 130.9, 128.6, 128.5, 127.4, 125.8, 122.0, 121.9, 117.6, 112.9, 103.7, 102.8, 76.9 ppm; HRMS (*m/z*) (ESI): calcd for C₁₆H₁₁BrNO₂ 327.9968 329.9947 [M+H⁺]; found 327.9967 327.9900.

3-(2-chloro-6-fluorophenyl)-1*H***,3***H***-furo[3,4-***a***]indolizin-1one (20) White solid, m.p. 163-165 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.05–8.04 (m, 1H), 7.90–7.84 (m, 1H), 7.30–7.27 (m, 1H), 7.25-7.21 (m, 1H), 7.17–7.09 (m, 2H), 7.02–6.91 (m,**

2H), 6.84 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 162.0 (d, ¹*J*_{C-F} = 253.0 Hz), 140.6, 134.7, 130.8 (d, ³*J*_{C-F} = 10.0 Hz), 129.5, 126.8, 125.9 (d, ⁴*J*_{C-F} = 3.6 Hz), 123.0, 122.8, 118.7, 115.2 (d, ²*J*_{C-F} = 22.1 Hz), 113.7, 104.5, 72.3 ppm; **HRMS** (*m*/*z*) (ESI): calcd for C₁₆H₁₀ClFNO₂ 302.0384 [M+H⁺]; found 302.0378.

3-(*p***-tolyl)-1***H***,3***H***-furo[3,4-***a***]indolizin-1-one (2p) White solid, m.p. 113-115 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d,** *J* **= 6.9 Hz, 1H), 7.85 (d,** *J* **= 8.9 Hz, 1H), 7.34–7.21 (m, 2H), 7.13 (dd,** *J* **= 19.9, 6.8 Hz, 4H), 6.83 (t,** *J* **= 6.9 Hz, 1H), 6.43 (s, 1H), 2.34 (s,**

3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 142.1, 138.9, 134.7, 129.4, 129.4, 126.8, 122.8, 118.6, 113.7, 104.8, 104.2, 78.8, 21.2 ppm; HRMS (*m/z*) (APCI): calcd for C₁₇H₁₄NO₂ 264.1025 [M+H⁺]; found 264.1007.

3-(o-tolyl)-1*H***,3***H***-furo[3,4-***a***]indolizin-1-one (2q) White solid, m.p. 117-119 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.07 –8.05 (m, 1H), 7.86 (d,** *J* **= 8.9 Hz, 1H), 7.24 (dd,** *J* **= 12.2, 7.6 Hz, 3H), 7.14–7.11 (m, 3H), 6.89–6.80 (m, 1H), 6.70 (s, 1H), 2.54 (s, 3H)**

ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 141.5, 136.4, 135.5, 130.8, 129.5, 128.9, 126.7, 126.3, 126.3, 122.8, 118.6, 113.8, 104.9, 104.5, 19.2 ppm; HRMS (*m/z*) (ESI): calcd for C₁₇H₁₄NO₂ 264.1025 [M+H⁺]; found 264.1020.

3-methyl-3-phenyl-1*H***,3***H***-furo**[**3**,**4**-*a*]**indolizin-1-one** (**2r**) Light yellow solid, m.p. 124-126 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.99 (d, *J* = 6.9 Hz, 1H), 7.72 (d, *J* = 8.9 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.27 (t, *J* = 7.6 Hz, 2H), 7.20 (d, *J* = 10.2 Hz,

2H), 7.02 (dd, J = 8.3, 7.4 Hz, 1H), 6.73 (t, J = 6.9 Hz, 1H), 1.92 (s, 3H) ppm; ¹³C **NMR** (100 MHz, CDCl₃): δ 164.5, 145.3, 141.1, 128.3, 127.5, 126.9, 125.8, 123.9, 121.9, 117.5, 112.7, 103.1, 102.6, 83.7, 28.7 ppm; **HRMS** (*m/z*) (ESI): calcd for C₁₆H₁₁N₃O 286.0844 [M+Na⁺]; found 286.0839.

4-phenyl-3-(p-tolyl)-1*H*,3*H*-furo[3,4-*a*]indolizin-1-one (2s) Light yellow solid, m.p. 154-156 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.28 (d, *J* = 7.2 Hz, 1H), 7.96–7.93 (m, 1H), 7.41–7.29 (m, 3H), 7.20–7.11 (m, 5H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.82 (td, *J* = 7.0, 1.3 Hz, 1H), 6.44 (s, 1H), 2.31 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 140.6, 138.8, 134.6, 129.3, 129.2, 129.2, 129.2, 128.9, 128.4, 127.3, 124.1, 122.8, 118.9, 117.6, 113.8, 104.4, 79.5, 21.3 ppm; **HRMS** (*m/z*) (ESI): calcd for C₂₃H₁₈NO₂ 340.1338 [M+H⁺]; found 340.1332.

3-(2-chlorophenyl)-4-phenyl-1*H***,3***H***-furo[3,4-***a***]indolizin-1-one (2t) White solid, m.p. 181-183 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.24 (d,** *J* **= 7.1 Hz, 1H), 7.93 (d,** *J* **= 8.9 Hz, 1H), 7.38–7.28 (m, 4H), 7.23–7.12 (m, 6H), 6.95 (d,** *J* **= 4.9 Hz, 1H), 6.83 (td,** *J* **= 7.0, 1.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 139.9,**

134.8, 133.8, 130.2, 129.7, 129.4, 129.2, 129.0, 128.8, 128.6, 127.1, 124.3, 123.0, 118.7, 117.7, 114.0, 104.2, 75.8 ppm; **HRMS** (*m/z*) (APCI): calcd for C₂₂H₁₅NO₂ 360.0791 [M+H⁺]; found 360.0769.

Copies of ¹H NMR and ¹³C NMR Spectra of all compounds

S16

S28

