Electronic Supplementary Information (ESI)

Multifunctional triple-porous Fe₃O₄@SiO₂ superparamagnetic microspheres for

potential hyperthermia and controlled drug release

Xuegang Lu*, Qianru Liu, Liqun Wang, Wenying Zhang, Wenfeng Jiang, Xiaoping Song

MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter.

School of Science, Xi'an Jiaotong University, Xi'an 710049, China.

Fig. S1 SEM image for *m*-Fe₃O₄@CTAB/SiO₂ microspheres.

^{*}Corresponding author.: Xuegang Lu, Tel.: +86 29 82663034; fax: +86 29 83237910. E-mail address: xglu@mail.xjtu.edu.en

Fig. S2 Zeta potential distribution of the initial prepared *m*-Fe₃O₄@d*m*-SiO₂ microspheres in aqueous solution.

Fig. S3 Zeta potential distribution of the *m*-Fe₃O₄@*m*-SiO₂ microspheres in aqueous solution after being stored for 30 days.

Fig. S4 Zeta potential distribution of the *m*-Fe₃O₄@d*m*-SiO₂ microspheres in PBS buffer solution at pH 7.4.

Fig. S5 Mean hydrodynamic diameter (D_h) changes of *m*-Fe₃O₄@*dm*-SiO₂ microspheres before and after incubation with human blood plasma

Fig. S6 Drug loading profile in mespoprous *m*-Fe₃O₄@*dm*-SiO₂ microspheres

Fig. S7 TEM image of porous Fe₃O₄ microspheres

Fig. S8 N₂ adsorption-desorption isotherms and pore size distribution (the inset) of the synthesized porous

 Fe_3O_4 microspheres. The BET surface area is 26.5 m²/g.

Fig. S9 TEM image of *m*-Fe₃O₄@*dm*-SiO₂ microspheres after 3 h of hot water etching

Fig. S10 TEM image of *m*-Fe₃O₄@*m*-SiO₂ microspheres prepared with CTAB templating and without PVP protecting. Only perpendicular aligned mesochannels can be observed in SiO₂ shells.

Fig. S11 TEM image of *m*-Fe₃O₄@*m*-SiO₂ microspheres prepared with PVP protecting and without CTAB templating. Only randomly distributed pores can be observed in SiO₂ shells.

Fig. S12 N₂ adsorption-desorption isotherms of the *m*-Fe₃O₄@*m*-SiO₂ microspheres prepared with CTAB templating and without PVP protecting. The BET surface area is 304.5 m²/g

Fig. S13 N₂ adsorption-desorption isotherms of the *m*-Fe₃O₄@*m*-SiO₂ microspheres prepared with PVP protecting and without CTAB templating. The BET surface area is 86.9 m²/g.

Fig. S14 Images of SGC-7901 cells after being cultured at different concentrations of *m*-Fe₃O₄@*dm*-SiO₂/5-FU for 24 h: (a) 0 μg/mL, (b) 32 μg/mL, (c) 200μg/mL