Electronic supplementary information (ESI)

Weak Hydrogen Bonding Competition between O–H···π and O–H···Cl

Hailiang Zhao, Shanshan Tang, Qun Zhang and Lin Du*

Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China

E-mail: lindu@sdu.edu.cn

Fig. S1. The high-lying structures of the TFE–CMP complexes obtained at the B3LYP-D3/aug-cc-pVTZ level. The dashed lines denote the O–H··· π and O–H···Cl hydrogen bonds.

Fig. S2. Spectra of TFE, CMP, and their mixture in the 3200-3650 cm⁻¹ region. A 6 m path length cell was used.

Fig. S3. (A) Spectra of TFE, CMP, and their mixture in the 3200-3650 cm⁻¹ region. A 20 cm path length cell was used. (B) Spectra of the TFE–CMP complex in the v_{H} band region.

Fig. S4. The integrated absorbance of the OH-stretching band in the TFE–CMP complex as a function of the product of the TFE and CMP pressures. The integration region for TFE–CMP is 3525-3632 cm⁻¹.

Fig. S5. The deconvolution fitting of the OH-stretching fundamental transition band of TFE-CMP.

structures	O-H····π/Cl			C=C
	$\Delta r_{\rm OH}^a$	r_{HB}^{b}	θc	$\Delta r_{C=C} d$
TFE-gauche-CMP (a)	0.0051			0.0028
TFE-gauche-CMP (b)	0.0066			0.0035
TFE-gauche-CMP (c)	0.0061	2.2952	152.8	0.0004
TFE-syn-CMP (d)	0.0055			0.0039
TFE-syn-CMP (e)	0.0046	2.3871	174.1	0.0014

Table S1. Selected geometric parameters of the most stable TFE–CMP structures at the MP2/aug-cc-pVTZ level (angles in degrees; lengths/distances in Å)

^a $\Delta r_{OH} = r_{complex} - r_{monomer}$, is the change in the OH bond length upon complexation. ^b Intermolecular hydrogen bond distance. ^c Intermolecular hydrogen bond angle. ^d $\Delta r_{C=C} = r_{complex} - r_{monomer}$, is the change in the C=C bond length upon complexation.

Table S2. Comparison of the calculated BE (not corrected) and BSSE of the most stable TFE–CMP structures with B3LYP-D3 and MP2 methods (kJ mol⁻¹)

structures _	B3LYP-	B3LYP-D3/aug-cc-pVTZ		MP2/aug-cc-pVTZ	
	BE	BSSE	BE	BSSE	
TFE-gauche-CMP (a)	-26.1	0.9	-29.5	6.4	
TFE-gauche-CMP (b)	-23.7	1.2	-28.3	7.0	
TFE-gauche-CMP (c)	-25.7	1.0	-28.3	6.3	
TFE-syn-CMP (d)	-30.4	1.1	-33.4	7.3	
TFE-syn-CMP (e)	-28.7	1.1	-32.3	7.4	