Electronic Supplementary Information (ESI) for

Cu@Ni core-shell nanoparticles/reduced graphene oxide nanocomposites for nonenzymatic glucose sensor[†]

Kong-Lin Wu,^a* Ya-Miao Cai,^a Bin-Bin Jiang,^b Weng-Chon Cheong,^c Xian-Wen Wei,^a* Weizhi Wang ^a and Nan Yu ^a

- ^a College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, the Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China.
- ^b School of Chemical and Engineering, Anhui University of Technology, Maanshan 243002, China.

^c Department of Chemistry, Tsinghua University, Beijing 100084, China.

Corresponding author:

E-mail: konglin@mail.ahnu.edu.cn (K.-L. Wu); xwwei@mail.ahnu.edu.cn(X.-W. Wei) Tel & Fax: +86 553 3869303.

Fig. S1 Raman spectra of graphene oxide (black line) and Cu₅₃@Ni₄₇ CSNPs/rGO NCs (red line).

Fig. S2 XPS spectra of Cu_{53} @Ni₄₇ CSNPs/rGO NCs: (a) survey spectrum, (b) Ni2p region, (c) Cu2p region, and (d) C1s region, respectively.

Fig. S3 STEM-HAADF image (A_1-E_1) , STEM-EDX maps in Cu K α 1 signals (A_2-E_2) and Ni K α 1 signals (A_3-E_3) , and overall map (A_4-E_4) for Cu₇₀@Ni₃₀ CSNPs/rGO NCs (A), Cu₆₃@Ni₃₇ CSNPs/rGO NCs (B), Cu₃₈@Ni₆₂ CSNPs/rGO NCs (C), Cu₂₁@Ni₇₉ CSNPs/rGO NCs (D), and Cu₅₂@Ni₄₈ CSNPs (E), respectively.

Fig. S4 Effect of the applied potential on peak current to 0.5 mM glucose for $Cu_{53}@Ni_{47}$ CSNPs/rGO/Nafion/GCE.

Fig. S5 Amperometric response of the $Cu_{53}@Ni_{47}$ CSNPs/rGO/Nafion/GCE with successive addition of 0.5 mM glucose, 0.1 mM UA, 0.1 mM DA, 0.1 mM AA, and 0.1 mM NaCl in 0.1 M NaOH solution at +0.575 V, respectively.

Fig. S6 Amperometric response of the $Cu_{53}@Ni_{47}$ CSNPs/rGO/Nafion/GCE with successive addition of 0.5 mM glucose, 0.1 mM sucrose, 0.1 mM maltose, 0.1 mM fructose, 0.1 mM D-galactose, 0.5 mM glucose in 0.1 M NaOH solution at +0.575 V, respectively.

Table S1

Molar ratio of Cu/Ni and quality ratio of $Cu_x @Ni_{100-x}$ to rGO sheets in each $Cu_x @Ni_{100-x}$ CSNPs/rGO NCs are determined by ICP-AES analysis.

Initial composition	Final composition	Quality ratio of $Cu_x @Ni_{100-x}$ to rGO sheets
Cu ₅₀ @Ni ₅₀	Cu ₅₂ @Ni ₄₈	_
Cu75@Ni25/rGO	Cu ₇₀ @Ni ₃₀ /rGO	2.83:1
Cu _{66.7} @Ni _{33.3} /rGO	Cu ₆₃ @Ni ₃₇ /rGO	2.91:1
Cu ₅₀ @Ni ₅₀ /rGO	Cu ₅₃ @Ni ₄₇ /rGO	3.02:1
Cu _{33.3} @Ni _{66.7} /rGO	Cu ₃₈ @Ni ₆₂ /rGO	3.00:1
Cu ₂₅ @Ni ₇₅ /rGO	Cu ₂₀ @Ni ₈₀ /rGO	2.85:1

Table S2

Net current contribution for glucose oxidation using $Cu_x @Ni_{100-x}$ CSNPs/rGO NCs with different final Cu: Ni molar ratios in NCs.

Cu: Ni	Net current (µA)
70: 30	3
63: 37	19
53: 47	23
38: 62	13
20: 80	11