Supporting Information

Preparation and characterization of novel alkali-resistant nanofiltration membranes with enhanced permeation and antifouling properties: the effects of functionalized graphene nanosheets

Quanling Xie ^{a,b,e}, Shishen Zhang ^{b,c}, Zongyuan Xiao ^c, Xiangfeng Hu ^c, Zhuan Hong ^{b,e}, Ruizao Yi ^{b,e}, Wenyao Shao ^{c,*}, Qiuquan Wang ^{a,d,*}

^a Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

^b Engineering Research Center of Marine Biological Resource Comprehensive Utilization, SOA, The Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, China

^c Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

^d State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China

^e Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, 361005, China

Table S1. Compositions of the casting solutions							
Membrane	PES (g)	SG (g)	GO (g)	PVP K30 (g)	NMP (g)	Acetone (g)	
Blank	27.0	0	0	1.0	62.0	10.0	
PES-0.05-SG	27.0	0.05	0	1.0	61.95	10.0	
PES-0.10-SG	27.0	0.10	0	1.0	61.90	10.0	
PES-0.15-SG	27.0	0.15	0	1.0	61.85	10.0	
PES-0.30-SG	27.0	0.30	0	1.0	61.70	10.0	
PES-0.05-GO	27.0	0	0.05	1.0	61.95	10.0	
PES-0.10-GO	27.0	0	0.10	1.0	61.90	10.0	
PES-0.15-GO	27.0	0	0.15	1.0	61.85	10.0	
PES-0.30-GO	27.0	0	0.30	1.0	61.70	10.0	

S1. Compositions of the casting solutions.

* Corresponding author.

E-mail address: wyshao@xmu.edu.cn (W. Shao), qqwang@xmu.edu.cn (Q. Wang).

S2. Elemental analysis of GO and SG.

Table S2. Elemental analysis of GO and SG								
	C(%)	H(%)	S(%)	O(%)				
GO	48.41	2.65	0.86	48.08				
SG	37.82	3.00	9.14	50.04				

S3. Color of membrane top surfaces.

Fig. S1 Color change of membrane top surfaces

S4. Viscosity of casting solutions.

Fig. S2 Viscosity of casting solutions

S5. Cross-sectional morphology of membranes.

Fig. S3 Cross-sectional SEM images of PES-SG membranes with different SG concentrations: (a) 0 wt%, (b) 0.1 wt% (C) 0.3 wt%

Fig. S4 Cross-sectional SEM images of PES-GO membranes with different GO concentrations: (a) 0.1 wt%, (b) 0.3 wt%.

S6. Zeta potentials of functional graphenes.

The zeta-potentials of functional graphenes were evaluated by particle-size analyzer (Nano-Zetasizer 90, Malvern Instruments, UK). Before test, a measured concentration of functional graphenes were ultrasonicated in water bath for 1 h to obtain stable GO and SG suspension.

Fig. S5 Zeta potentials of functional graphene nanosheets