Supporting Information for:

Pyridinic and Graphitic Nitrogen-rich Graphene for High-Performance Supercapacitor and Metal-free Bifunctional Electrocatalyst for ORR and OER

Shaikh Nayeem Faisal,*^a Enamul Haque,^a Nikan Noorbehesht,^a Weimin Zhang,^a Andrew T. Harris^a Tamara L. Church^a and Andrew I. Minett*^a

^aLaboratory of Sustainable Technology, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.

Email: <u>andrew.minett@sydney.edu.au</u> and shaikh.faisal@sydney.edu.au

Table of Contents

Item	Figure
Thermogravimetric analysis of an as-prepared GO–Uric acid composite	S1
and Uric acid at a heating rate of 5 °C min ⁻¹ in an argon environment.	
SEM images of NG1 and NG5.	S2
XPS spectra of GO (green) and rGO (black).	S 3
High-resolution C1s XPS spectra of NG5.	S4
High-resolution N1s XPS spectra of NG5.	S 5
High-resolution N1s XPS spectra of NG1.	S6
Nitrogen adsorption/desorption isotherm of NG10.	S7
Nitrogen adsorption/desorption isotherm of NG5.	S8
Nitrogen adsorption/desorption isotherm of NG1.	S9
Nitrogen adsorption/desorption isotherm of rGO.	S10
CVs of NG10 in a 3-electrode cell using Ag/AgCl as a reference	S11
electrode at different scan rates of 50, 100 and 200 mV s ⁻¹ .	
Optical images of swagelok test cell (T-cell).	S12
Ragone plot of the T-cell device based on two-electrode mass of NG10.	S13
LSV curves at 1600 rpm with the presence of oxygen for different mass	S14
loading of NG10 for ORR.	
EIS curves for different mass loading of NG10.	S15
LSV curves for different mass loading of NG10 for OER	S16
CVs of NG10 at a scan rate of 50 mV s ⁻¹ in O ₂ -saturated 0.1-M KOH	S17
solution and O ₂ -saturated 0.1-M KOH solution containing 3 M	
methanol.	
Comparison of the gravimetric performance for the as-prepared NG10	Table S1
with previously reported nitorgen-doped and boron-doped graphene.	

Figure S1. Thermogravimetric analysis of an as-prepared GO–uric acid composite at a rato of 1:10 by mass and uric acid only. The composites were heated at 5 °C min⁻¹ under flowing argon.

Figure S2. SEM images of NG1 and NG5.

Figure S3 XPS spectra of GO (green) and rGO (black).

Figure S4. High resolution C1s XPS spectra of NG5.

Figure S5. High resolution N1s XPS spectra of NG5.

Figure S6. High resolution N1s XPS spectra of NG1.

Figure S7. Nitrogen adsorption/desorption isotherm of NG10.

Figure S8. Nitrogen adsorption/desorption isotherm of NG5.

Figure S9 Nitrogen adsorption/desorption isotherms of NG1.

Figure S10. Nitrogen adsorption/desorption isotherm of rGO.

Figure S11. Cyclic voltammograms of NG10 in a three-electrode cell using Ag/AgCl as a reference electrode and Pt wire as counter electrode at scan rates of 50, 100 and 200 mV s⁻¹ in 0.5-M H_2SO_4 solution.

Figure S12. Optical images of stacked electrodes supercapacitor (T-cell).

Figure S13. Ragone plot of the T-cell device based on two-electrode mass of active materials.

Figure S14. (a) LSV curves at 1600 rpm with the presence of oxygen for different mass loading of NG10 for ORR. (b) Comparison of current density with mass loading of active material.

Figure S15. EIS curves for different mass loading of NG10.

Figure S16. (a) LSV curves for different mass loading of NG10 for OER. (b) Comparison of Potentials at a current density of 10 mA cm⁻² with the different mass loadings of active material.

Figure S17. Cyclic voltammograms of NG10 at a scan rate of 50 mV s⁻¹ in O_2 -saturated 0.1-M KOH solution and O_2 -saturated 0.1-M KOH solution containing 3 M methanol.

Table S1. Comparison of the gravimetric performance for the as-prepared NG10 with
previously reported nitorgen-doped and boron-doped nanocarbon materials.

Material	Doping/ Reducing	Gravimetric Capacitanc	Electrolyte	Energy density (Wh kg ⁻¹)	Ref.
Crumpled	Cvanamide	2459 F a^{-1}	[BULNIBE.	(WII Kg)	1
Nitrogen-doned		240.01 g at 1 Δ α ⁻¹		_	I
Granhene		ating	accionnine		
nanosheets					
3D Nitrogen-	Pyrrole	180 F g ⁻¹ at	6 М КОН	-	2
doped Graphene-	i jiiolo	$0.5 \text{ A} \text{ a}^{-1}$			-
CNT		ele rig			
Reduced	Urea	255 Fg ⁻¹ at	6 M KOH	-	3
Graphene Oxide		0.5 Åg ⁻¹			
Nitrogen-doped	Urea	326 F g⁻¹ at	6 M KOH	25.02	4
Graphene		0.2 A g⁻¹			
3D Nitrogen and	Ammonia	239 F g ⁻¹ at	1 M H ₂ SO ₄	8.7	5
Boron co-doped	boron	1 mV s⁻¹			
Graphene	triflouride				
	(NH ₃ BF ₃)				
Boron-doped	Borane-	160 F g ⁻¹ at	6 M KOH	-	6
graphene	tetrahydrofur	1 A g⁻¹			
nanoplatelets	an (BH ₃ -THF)				

Nitrogen-doped	phenylenedia	301 F g⁻¹ at	6 M KOH	-	7
Graphene	mine	0.1 A g ⁻¹			
Nitrogen-	Ammonia	198 F g⁻¹ at	6 M KOH	-	8
enriched		0.05 A g⁻¹			
nonporous					
carbon					
Nitrogen-	Melamine	167 F g ⁻¹ at	1 M H ₂ SO ₄	-	9
enriched carbon		1 V s-1			
nanotube					
Nitrogen-doped	Polypyrrole	202 F g⁻¹ at	6 M KOH	7.1	10
porous carbon		1 A g⁻¹			
nanofiber					
Nitrogen-doped	Pyrrole	240 F g⁻¹ at	1 M H ₂ SO ₄	19.5	11
porous carbon		0.1 A g⁻¹			
Nitrogen-doped	Melamine	203 F g⁻¹ at	6 M KOH	47.8	12
carbon foam		0.5 A g ⁻¹			
Graphitic Carbon	Melamine	264 at F g⁻¹	0.1 M	30	13
nitride		0.4 A g ⁻¹	LiClO ₄		
Nitrogen-doped	Hexamethyle	270 F g⁻¹ at	1 M H ₂ SO ₄	-	14
Graphene	netetramine	1 A g ⁻¹			
Nitrogen-doped	Aminoterphth	210 F g ⁻¹ at	0.5 M	-	15
Graphene	alic acid	1 A g ⁻¹	H_2SO_4		
Nitrogen-doped	Uric Acid	230 Fg ⁻¹ at	0.5 M	62.6	This
Graphene		1 A g ⁻¹	H_2SO_4		work

References:

- [1] Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng and J. Chen, Adv.
- Mater., 2012, 24, 5610-5616.
- [2] B. You, L. Wang, L. Yao and J. Yang, *Chem. Commun.* 2013, **49**, 5016-50.
- [3] Z. Lei, L. Lu and X. S. Zhao, *Energy Environ. Sci.* 2012, 5, 6391-.
- [4] L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li and H. Fu, *RSC Adv.* 2012, 2, 4498.
- [5] Z. –S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng and K. Müllen, Adv.
- Mater. 2012, 24, 5130-5135.
- [6] J. Han, L. L. Zhang, S. Lee, J. Oh, K. -S. Lee, J. R. Potts, J. Ji, X. Zhao, R. S. Ruoff and
- S. Park, ACS Nano 2013, 7, 19-26.

- [7] Y. Lu, F. Zhang, T. Zhang, K. Leng, L. Zhang, X. Yang, Y. Ma, Y. Huang, M. Zhang and Y. Chen, Carbon 2013, 63, 508-514.
- [8] D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z. H. Zhu and G. Q. Lu, *Adv. Funct. Mater.* 2009, **19**, 1800-1809.
- [9] G. Lota, K. Lota and E. Frackowiak, *Electrochem. Commun.* 2007, 9, 1828-1832.
- [10] J. –F. Chen, X. –D. Zhang, H. –W. Liang, M. Kong, Q. –F. Guan, P. Chen, Z. –Y. Wu and S. –H. Yu, ACS Nano 2012, 6, 7092-7102.
- [11] G. A. Ferrero, A. B. Fuertes and M. Seyilla, J. Mater. Chem. A 2015, 3, 2914-2923.
- [12] J. Wang, L. Shen, P. Nie, X. Yun, Y. Xu, H. Dou and X. Zhang, *J Mater. Chem. A* 2015, 3, 2853-2860.
- [13] Q. Chen, Y. Zhao, X. Huang, N. Chen and L. Qu, J. Mater Chem A 2015, 3, 6761-6766.
- [14] Y. Zou, I. A. Kinloch and R. A. W. Dryfe, J. Mater. Chem. A 2014, 2, 19495-19499.
- [15] E. Haque, M. M. Islam, E. Pourazadi, M. Hasan, S. N. Faisal, A. K. Roy, K.
- Konstantinov, A. T. Harris, A. I. Minett and V. G. Gomes, RSC Adv., 2015, 5, 30679-30686.