Cover Page for Supporting Information

Manuscript title:

Impacts of inorganic draw solutes on the performance of thin-film composite forward osmosis membrane in a microfiltration assisted anaerobic osmotic membrane bioreactor

Author list:

Taozhan Hu, Xinhua Wang*, Chen Wang, Xiufen Li*, Yueping Ren

Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and

Civil Engineering, Jiangnan University, Wuxi 214122, P.R. China

Total number of pages (including the cover page):

7 pages

List of Figures:

Page 3	Fig. S1. Variations of water flux of MF membrane in both AnMF-OMBRs.
Page 4	Fig. S2. Variations of TOC concentrations in the influent, sludge supernatant, MF and FO permeates in NaCl-reactor (a) and MgCl ₂ -reactor (b).
Page 5	Fig. S3. Variations of TP concentrations in the influent, sludge supernatant, MF and FO permeates in NaCl-reactor (a) and MgCl2-reactor (b).
Page 6	Fig. S4. EDX images of new and fouled FO membranes. (a) AL of the virgin FO membrane; (b) AL of the fouled FO membrane in the NaCl-reactor; (c) AL of the fouled FO membrane in the MgCl ₂ -reactor; (d) SL of the virgin FO membrane; (e) SL of the fouled FO membrane in the NaCl-reactor; (f) SL of the fouled FO membrane in the MgCl ₂ -reactor.

Page 7Fig. S5. CLSM images of total cells (SYTO 63), proteins (FITC),
α-D-glucopyranose polysaccharides (Con A) and
β-D-glucopyranose polysaccharides (CW) in the FO biofouling
active layer. (a) and (b) total cells in the NaCl-reactor and
MgCl2-reactor, respectively; (c) and (d) proteins in the
NaCl-reactor and MgCl2-reactor, respectively; (e) and (f)
α-D-glucopyranose polysaccharides in the NaCl-reactor and
MgCl2-reactor, respectively; (g) and (h) β-D-glucopyranose
polysaccharides in the NaCl-reactor, respectively.

Fig. S1. Variations of water flux of MF membrane in both AnMF-OMBRs.

Fig. S2. Variations of TOC concentrations in the influent, sludge supernatant, MF and FO permeates in NaCl-reactor (a) and MgCl₂-reactor (b).

Fig. S3. Variations of TP concentrations in the influent, sludge supernatant, MF and FO permeates in NaCl-reactor (a) and MgCl₂-reactor (b).

Fig. S4. EDX images of new and fouled FO membranes. (a) AL of the virgin FO membrane; (b) AL of the fouled FO membrane in the NaCl-reactor; (c) AL of the fouled FO membrane in the MgCl₂-reactor; (d) SL of the virgin FO membrane; (e) SL of the fouled FO membrane in the NaCl-reactor; (f) SL of the fouled FO membrane in the MgCl₂-reactor.

Fig. S5. CLSM images of total cells (SYTO 63), proteins (FITC), α -D-glucopyranose polysaccharides (Con A) and β -D-glucopyranose polysaccharides (CW) in the FO

biofouling of AL. (a) and (b) total cells in the NaCl-reactor and MgCl₂-reactor, respectively; (c) and (d) proteins in the NaCl-reactor and MgCl₂-reactor, respectively; (e) and (f) α -D-glucopyranose polysaccharides in the NaCl-reactor and MgCl₂-reactor, respectively; (g) and (h) β -D-glucopyranose polysaccharides in the NaCl-reactor and MgCl₂-reactor, respectively.