Electronic Supplementary Information

A novel and simple solvent-dependent fluorescent probe based on a click generated 8-aminoquinoline-steroid conjugate for multidetection of Cu(II), oxalate and pyrophosphate

Zhen Zhang*, Yuan Zou and Chengquan Deng

Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, China. E-mail: zzlinda@mail.xjtu.edu.cn; Fax: +86 29 82668559; Tel: +86 29 82663914.

Contents

- 1. ¹H NMR spectrum of compound 2
- 2. ¹H NMR spectrum of compound **3**
- 3. ¹H NMR, ¹³C NMR, and HR-ESI-MS spectra of probe 1
- 4. UV-vis absorption spectra of probe 1 with different levels of Cu^{2+}
- 5. UV-vis absorption spectra of probe 1 with different metal ions
- 6. Effects of CH₃CN content on the fluorescence response of probe 1 to Cu^{2+}
- 7. Effects of pH on the fluorescence response of probe 1 to Cu^{2+}
- 8. Time-dependent fluorescence response of probe 1 upon addition of Cu^{2+}
- 9. UV-vis absorption spectra of probe 1 with different anions
- 10. UV-vis absorption spectra of probe 1 with different levels of $C_2O_4^{2-}/P_2O_7^{4-}$
- 11. Effects of DMSO content on the fluorescence response of probe 1 to $C_2O_4^{2-}/P_2O_7^{4-}$
- 12. Effects of pH on the fluorescence response of probe 1 to $C_2O_4^{2-}/P_2O_7^{4-}$
- 13. Time-dependent fluorescence response of probe 1 upon addition of $C_2O_4^{2-}/P_2O_7^{4-}$
- 14. ¹H NMR spectra of probe **1** measured before and after addition of Cu²⁺
- 15. The reversibility of probe 1 for Cu^{2+} detection
- 16. The reversibility of probe 1 for $C_2O_4^{2-}/P_2O_7^{4-}$ detection
- 17. Comparison of the recently reported multi-detection probes for Cu²⁺, C₂O₄²⁻ and P₂O₇⁴⁻

1. ¹H NMR spectrum of compound **2**

Fig. S1 ¹H NMR spectrum of compound 2.

2. ¹H NMR spectrum of compound **3**

Fig. S2 ¹H NMR spectrum of compound 3.

3. ¹H NMR, ¹³C NMR, and HR-ESI-MS spectra of probe $\mathbf{1}$

Fig. S3 ¹H NMR spectrum of probe 1.

Fig. S4 ¹³C NMR spectrum of probe 1.

Fig. S5 HR-ESI-MS spectrum of probe 1.

4. UV-vis absorption spectra of probe 1 with different levels of Cu²⁺

Fig. S6 UV-vis absorption spectra of probe **1** (20 μ M) with different levels of Cu²⁺ (from bottom to top: 0, 25, 30, 50, 70, 80, 90, 100 and 110 μ M) in CH₃CN–H₂O (99/1, v/v, 10 mM HEPES, pH 7.2). Inset: absorbance changes of probe **1** at 355 nm as a function of Cu²⁺ concentration.

5. UV-vis absorption spectra of probe 1 with different metal ions

Fig. S7 UV-vis absorption spectra of probe 1 (20 μ M) with different metal ions (100 μ M) in CH₃CN–H₂O (99/1, v/v, 10 mM HEPES, pH 7.2).

6. Effects of CH₃CN content on the fluorescence response of probe 1 to Cu^{2+}

Fig. S8 Effects of CH₃CN content on the fluorescence intensity of probe 1 (20 μ M) at 470 nm in the absence and presence of Cu²⁺ (100 μ M) in aqueous solution (10 mM HEPES, pH 7.2). $\lambda_{ex} = 350$ nm.

7. Effects of pH on the fluorescence response of probe 1 to Cu^{2+}

Fig. S9 Fluorescence intensity ratios of probe **1** (20 μ M) at 470 nm after (F) and before (F₀) addition of Cu²⁺ (50 μ M) in CH₃CN–H₂O (99/1, v/v, 10 mM HEPES) at various pH values (from 4.0 to 10.0). $\lambda_{ex} = 350$ nm.

8. Time-dependent fluorescence response of probe 1 upon addition of Cu²⁺

Fig. S10 Time course of the fluorescence intensity changes of probe 1 (20 μ M) at 470 nm upon addition of Cu²⁺ (10 μ M) in CH₃CN–H₂O (99/1, v/v, 10 mM HEPES, pH 7.2). $\lambda_{ex} = 350$ nm.

9. UV-vis absorption spectra of probe 1 with different anion

Fig. S11 UV-vis absorption spectra of probe 1 (20 μ M) with different anions (30 μ M) in DMSO-H₂O (1/1, v/v, 10 mM HEPES, pH 7.2).

10. UV-vis absorption spectra of probe 1 with different levels of $C_2O_4^{2-}/P_2O_7^{4-}$

Fig. S12 UV-vis absorption spectra of probe **1** (20 μ M) with different levels of (a) C₂O₄^{2–} (from bottom to top: 0, 10, 30, 70 and 100 μ M) and (b) P₂O₇^{4–} (from bottom to top: 0, 10, 15, 20, 25 and 30 μ M) in DMSO–H₂O (1/1, v/v, 10 mM HEPES, pH 7.2).

11. Effects of DMSO content on the fluorescence response of probe 1 to $C_2O_4^{2-}/P_2O_7^{4-}$

Fig. S13 Effects of DMSO content on the fluorescence intensity of probe 1 (20 μ M) at 464 nm in the absence and presence of C₂O₄²⁻/P₂O₇⁴⁻ (50 μ M) in aqueous solution (10 mM HEPES, pH 7.2). $\lambda_{ex} = 350$ nm.

12. Effects of pH on the fluorescence response of probe 1 to $C_2O_4{}^{2-}/P_2O_7{}^{4-}$

Fig. S14 Fluorescence intensity ratios of probe **1** (20 μ M) at 464 nm after (F) and before (F₀) addition of C₂O₄^{2–}/P₂O₇^{4–} (50 μ M) in DMSO–H₂O (1/1, v/v, 10 mM HEPES) at various pH values (from 4.0 to 10.0). $\lambda_{ex} = 350$ nm.

13. Time-dependent fluorescence response of probe 1 upon addition of $C_2O_4^{2-}/P_2O_7^{4-}$

Fig. S15 Time course of the fluorescence intensity changes of probe 1 (20 μ M) at 464 nm upon addition of C₂O₄^{2–}/P₂O₇^{4–} (10 μ M) in DMSO–H₂O (1/1, v/v, 10 mM HEPES, pH 7.2). $\lambda_{ex} = 350$ nm.

14. ¹H NMR spectra of probe **1** measured before and after addition of Cu²⁺

Fig. S16 ¹H NMR spectra of probe 1 (10 mM) measured before and after addition of Cu^{2+} (0.05, 0.1 and 0.5 equivalent) in CD₃CN–D₂O (99/1, v/v).

15. The reversibility of probe 1 for Cu^{2+} detection

Fig. S17 Fluorescence spectra of probe 1–Cu²⁺ complex with different levels of EDTA in CH₃CN–H₂O (99/1, v/v, 10 mM HEPES, pH 7.2). Probe 1 (20 M), Cu²⁺ (100 μ M). $\lambda_{ex} = 350$ nm.

16. The reversibility of probe 1 for $C_2O_4^{2-}/P_2O_7^{4-}$ detection

Fig. S18 Fluorescence spectra of (a) probe $1-C_2O_4^{2-}$ complex and (b) probe $1-P_2O_7^{4-}$ complex with different levels of Pb²⁺ in DMSO-H₂O (1/1, v/v, 10 mM HEPES, pH 7.2). Probe 1 (20 M), $C_2O_4^{2-}/P_2O_7^{4-}$ (100 μ M). $\lambda_{ex} = 350$ nm.

Probe	Detection mode and properties	Ka	Detection limit	Response time
carbon dots <i>Mater. Lett.</i> , 2014, 115 , 233	fluorescent turn-off/on for sequential detection of Cu^{2+} and $C_2O_4^{2-}$ (based on Cu^{2+} displacement approach) in Tris buffer solution, $\lambda_{ex}/\lambda_{em}$ 470/543 nm, quantitative detection ranged from 10–90 μ M for Cu^{2+} , and 10–70 μ M for $C_2O_4^{2-}$	no data	1 μM for C ₂ O ₄ ²⁻	rapid, no data
NH HN NH HN NH HN Chem. Commun., 2012, 48 , 6951	by fluorescent indicator (fluorescein, $\lambda_{ex}/\lambda_{em}$ 470/510 nm, and eosin Y, $\lambda_{ex}/\lambda_{em}$ 490/540 nm) displacement assays, macrocyclic(L)–Cu ²⁺ complex formed an ensemble with C ₂ O ₄ ^{2–} and showed off- on fluorescent sensing for C ₂ O ₄ ^{2–} in water at neutral pH with quantitative detection ranged from 0–5 µM using Cu ₂ L–Eosin Y	> 10 ⁷ M ⁻¹ for C ₂ O ₄ ²⁻	0.079 μM for C ₂ O ₄ ^{2–} by Cu ₂ L– Eosin Y	no data
<i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>N</i> <i>H</i> <i>H</i> <i>H</i> <i>N</i> <i>H</i> <i>H</i> <i>H</i> <i>N</i> <i>H</i> <i>H</i> <i>H</i> <i>H</i> <i>H</i> <i>H</i> <i>H</i> <i>H</i> <i>H</i> <i>H</i>	by the fluorescent indicator eosin Y displacement, a dimacrocyclic– Cu^{2+} complex could form an ensemble with $C_2O_4^{2-}$ and showed off-on fluorescent sensing ($\lambda_{ex}/\lambda_{em}$ 524/537 nm) for $C_2O_4^{2-}$ in water at neutral pH	(1.3 ± 0.1) × 10 ⁵ M ⁻¹ for C ₂ O ₄ ²⁻	no data	no data
$ \begin{array}{c} $	by indicator (pyrocatechol violet, colorimetric indicator, ratio of A_{655}/A_{444} ; esculetine, fluorescent indicator, $\lambda_{ex}/\lambda_{em}$ 380/465 nm) displacement, a dinuclear–Cu ²⁺ complex with two ammonium arms formed an ensemble with P ₂ O ₇ ^{4–} , showing color changes and off-on fluorescence in aqueous solution	by the UV indicator, 8.55 \times 10 ⁶ M ⁻¹ for P ₂ O ₇ ⁴⁻	0.15 μM for P ₂ O ₇ ⁴⁻ by fluorescence assay	no data

17. Table S1. Comparison of the recently reported multi-detection probes for Cu²⁺, $C_2O_4^{2-}$ and $P_2O_7^{4-}$

Probe	Detection mode and properties	Ka	Detection limit	Response time
но	a squaraine-based fluorescent probe chelated Cu ²⁺ and showed on-off sensing ($\lambda_{ex}/\lambda_{em}$ 620/670 nm, quantitative detection range 0.5–3.5 μ M) in MeCN-H ₂ O (9/1, v/v). P ₂ O ₇ ⁴⁻ extracted Cu ²⁺ from the probe- Cu ²⁺ complex and restored the spectral signal of free probe (quantitative detection range 0–25 μ M)	no data	near 15 nM for Cu ²⁺ , and 0.072 μ M for P ₂ O ₇ ⁴⁻	no data
$\int_{N} \int_{V} \int_{V$	a flavonoid-based probe exhibited fluorescence quenching ($\lambda_{ex}/\lambda_{em}$ 390/510 nm) to Cu ²⁺ with quantitative detection ranged from 0–10 μ M in DMSO–H ₂ O (v/v = 9/1, 0.1 mM PBS, pH 7.4). Moreover, the probe-Cu ²⁺ complex could also be used for secondary sensing of P ₂ O ₇ ^{4–} based on Cu ²⁺ displacement approach with fluorescence turn-on behavior	no data	lower than 100 nM for Cu ²⁺	no data
carbon quantum dots with rich carboxyl groups on the surface <i>Biosens. Bioelectron.</i> , 2015, 68 , 675	richness of carboxyl on the surface of carbon quantum dots enables aggregation caused fluorescence quenching by Cu ²⁺ , and the competitive interaction among carboxyl, Cu ²⁺ and P ₂ O ₇ ⁴⁻ endows disaggregation induced fluorescence enhancement, $\lambda_{ex}/\lambda_{em}$ 452/525 nm	no data	0.3 μM for P ₂ O ₇ ⁴⁻	real-time
NH ₂ H ₂ N H ₂ N H ₂ N H ₂ N H ₂ N N N N N N N N N N N N N N N N N N N	by colorimetric indicator (pyrocatechol violet, ratio of A_{630}/A_{444}) displacement, a dinuclear– Cu^{2+} complex with ammonium moieties formed an ensemble with $P_2O_7^{4-}$, showing colorimetric changes in aqueous solution	5.75×10^{6} M ⁻¹ for P ₂ O ₇ ⁴⁻	no data	no data

Probe	Detection mode and properties	Ka	Detection limit	Response time
$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	a quinoline derivative was used as a fluorescent probe for sequential sensing $(\lambda_{ex}/\lambda_{em} 305/412 \text{ nm})$ of Cu ²⁺ and P ₂ O ₇ ⁴⁻ in DMSO–H ₂ O (1/1, v/v, 20 mM HEPES, pH 7.4). The probe displayed high selectivity to Cu ²⁺ (quantitative detection range 0–20 μ M), and the probe- Cu ²⁺ showed high selectivity to P ₂ O ₇ ⁴⁻ (quantitative detection range 1–20 μ M) with emission recovery of the free probe	1.59×10^{7} M ⁻¹ for Cu ²⁺	4.47 μ M for Cu ²⁺ , and 3.16 μ M for P ₂ O ₇ ⁴⁻	no data
$ \begin{array}{c} H \\ \hline \\ N \\ \hline $	a turn-on fluorescent probe ($\lambda_{ex}/\lambda_{em}$ 280/395 nm) based on Cu ²⁺ complex of 2,6- bis(2-benzimidazolyl) pyridine was developed for P ₂ O ₇ ⁴⁻ , due to the formation of a ternary complex of probe-Cu ²⁺ -P ₂ O ₇ ⁴⁻ , with quantitative detection range of 3–90 µM at a neutral pH	no data	no data	no data
<i>J. Fluoresc.</i> , 2011, 21 , 701	constructed by a copper complex (receptor) and eosin Y (indicator), an ensemble displayed fluorescent off-on $(\lambda_{ex}/\lambda_{em} 523/543 \text{ nm})$ recognition of P ₂ O ₇ ⁴⁻ in water at pH 7.4	$\begin{array}{l} 1.17 \times 10^{5} \\ M^{-1} \mbox{ for } \\ P_{2}O_{7}^{4-} \end{array}$	no data	no data
$ \begin{array}{c} $	fluorescence quenching ($\lambda_{ex}/\lambda_{em}$ 350/470 nm) upon binding to Cu ²⁺ in CH ₃ CN– H ₂ O (99/1, v/v, 10 mM HEPES, pH 7.2), and fluorescent enhanced response ($\lambda_{ex}/\lambda_{em}$ 350/464 nm) toward C ₂ O ₄ ²⁻ and P ₂ O ₇ ⁴⁻ in DMSO–H ₂ O (1/1, v/v, 10 mM HEPES, pH 7.2)	$\begin{array}{l} 3.28 \times 10^{3} \\ M^{-1} \mbox{ for } \\ Cu^{2+}, 2.23 \times \\ 10^{4} \ M^{-1} \mbox{ for } \\ C_{2}O_{4}{}^{2-} \mbox{ and } \\ 4.96 \times 10^{4} \\ M^{-1} \mbox{ for } \\ P_{2}O_{7}{}^{4-} \end{array}$	0.12 μ M for Cu ²⁺ , 0.28 μ M for C ₂ O ₄ ²⁻ and 0.55 μ M for P ₂ O ₇ ⁴⁻	completed within several seconds