A Ruthenium(II) Complex as Potential luminescent Switch-on Probe on G-quadruplex DNA

Li Li^a, Hui-Min Liu^b, Xu-Kui Liu^a, Si-Yan Liao^c, Yu-Tao Lan^d, Qiong Wu^{a, *}, Xi-

Cheng Wang^{b,*}, Qi Wang^a, Shuang-Yan Zhang^a, Wen-Jie Mei^{a,*}

^aSchool of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006,

China, PRC

^bThe First Affiliation Hospital, Guangdong Pharmaceutical University, Guangzhou,

510006, China, PRC

^cSchool of Pharmacy, Guangzhou Medical University, Guangzhou, 510006, China,

PRC

^dSchool of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510006,

China, PRC

*Correspondence: <u>wenjiemei@126.com</u>, <u>wuqiongniu.1113@163.com</u>

13902400598@126.com

Main contents

1. The synthetic route of ruthenium(II) complexes	S1
2. The ESI-MS spectra	S2
3. The ¹ H NMR spectra	S3
4. The ¹³ C NMR spectra	S4
5. The ¹ H- ¹ H COSY spectra	S5
6. Selectivity recognition of <i>c-myc</i> G-quadruplex DNA rather than CT-DNA	S6
7. The expression of c-Myc regulated by ruthenium(II) complexes	S7
8. The AFM of <i>c-myc</i> G4 DNA and ruthenium(II) complexes alone	S8

1. The synthetic route of 1 and 2

Fig. S1 Microwave-assisted synthesis route of 1 and 2.

2. The ESI-MS spectra of 1 and 2

A

Fig. S2 The ESI-MS spectra of 1 (A) and 2 (B)

3. The ¹H NMR spectra of 1 and 2

Fig. S3 The ¹H NMR spectra of **1** (A) and **2** (B)

4. The ${}^{13}C$ NMR spectra of 1 and 2

Л

В

Fig. S4 The 13 C NMR spectra of 1 (A) and 2 (B)

5. The ¹H- ¹H COSY spectra of **1** and **2**

Fig. S5 The ¹H-¹H COSY spectra of 1 (A) and 2 (B)

6. Selectivity recognition of c-myc G-quadruplex DNA rather than CT-DNA

Fig. S6 Both Ru(II) complexes **1** and **2** selectively bind to G-quadruplex DNA rather than to double-strand CT-DNA. (A) The hypochromic effect of **1** and **2** changed between *c-myc* and CT-DNA; (B) the DNA-binding constant of **1** and **2** interacted with *c-myc* and CT-DNA by electronic

spectra; (C) the fluorescence intensity of **1** and **2** changed with the increase in *c-myc* (C) and CT-DNA (D).

7. The expression of c-Myc regulated by 1 and 2

Western blot analysis was used to investigate the c-Myc expression in 1 and 2 treated MDA-MB-231 cells. As shown in Fig. S7, the treatment of cells with complex 1 and 2 at the different concentrations notably down-regulated c-Myc expression in a dose-dependent manner. The results suggest that Ru(II) complexes may decrease c-Myc expression through the stabilization of the c-Myc oncogene G4-DNA in the promoter region, especially for 2, exhibited greater inhibition of c-Myc expression than 1, which was agreement with the above spectroscopic analysis. These results indicated that this class of Ru(II) complex can bind to c-myc G-quadruplex DNA and block its expression.

Fig. S7 The ruthenium(II) complexes 1 and 2 (0, 5, 10 and 20 μ M) blocked the expression of *c*-*myc* in MDA-MB-231 cells.

8. The AFM of free c-myc G4 DNA and ruthenium(II) complexes alone

Fig. S8 (A) The AFM image of *c-myc* DNA (100 μ M) in the absence of Ru(II) complexes. (B) The AFM image of **1** (100 μ M). (C)The AFM image of **2** (100 μ M).