Electronic Supplementary Information (ESI)

Cu2+1O/graphene nanosheets supported on three dimensional

copper foam for sensitive and efficient non-enzymatic detection of

glucose

Liang Yang, Daoping Liu, Guomin Cui*, Yingming Xie

Institute of New Energy Science and Engineering, School of Energy and Power

Engineering, University of Shanghai for Science and Technology, Shanghai 200093,

China

* Corresponding author. Tel/Fax: +86 21 55272320.E-mail address:

cgm1226@163.com (G.M. Cui).

Fig. S1 SEM images of CF

Fig. S2 (a) Cyclic voltammograms of $GN/Cu_{2+1}O/CF$ electrodewith addition of 5mM glucose in 0.1 M NaOH at various scan rates from 20, 50, 100, and 200 mV s⁻¹, respectively.(b) plot of peak current vs. square root of scan rate.

Fig. S3 Cyclic voltammograms of $GN/Cu_{2+1}O/CF$ electrodewith different concentrations of glucose in 0.1 M NaOH. Scan rate is 20 mV S⁻¹.

Fig. S4 Amperometric responses of $Cu_{2+1}O/CF$ and electrode upon successive addition of glucose in 0.1 M KOH at 450 mV (vs. SCE). And inset is the corresponding calibration curves.

Fig. S5 Reproducibility of five $GN/Cu_{2+1}O/CF$ electrodes for detection of 1.0 mM glucose.

Fig. S6 The repeatability of $GN/Cu_{2+1}O/CF$ electrode for detecting 1.0 mM glucose for four times.

Table S1 Comparison of the performance of electrodewithpreviouslyreported non-enzymatic glucose sensors.

Samples	Sensitivity	Detection	Applied potential	Ref.
	(µA∙mM⁻	limit (µM)	(V)	
	¹∙cm⁻²)			
GN/Cu ₂₊₁ O/CF	3076	5.0	0.45 V vs. SCE	This
				work
Copper foam	2570	0.98	0.50 V vs. Ag/AgCl	1
Copper foam	1810	0.98	0.50 V vs. Ag/AgCl	1
hollow CuO	1112	0.33	0.50 V vs. Ag/AgCl	2
polyhedron				
CuO/SG	1298	0.08	0.50 V vs. Ag/AgCl	3
Cu foam	3397	12.96	0.50V vs. Ag/AgCl	4
CuO nanoellipsoids	2555	0.072	0.55 V vs. Ag/AgCl	5
CuO NT arrays	1890	0.1	0.32 V vs. Ag/AgCl	6
CuO nanowires/	2217	0.3	0.35 V vs. Ag/AgCl	7
copper				
foam				
CuO	1890	0.1	0.32 V vs. Ag/AgCl	8
nanotubes/copper foil				
CuO nanourchins	2682	1.52	0.50 V vs. Ag/AgCl	9
inkjet printed CuO	2762.5	0.5	0.60 V vs. Ag/AgCl	10
nanoparticles				
CuO nanospheres	404.53	1.0	0.60 V vs. Ag/AgCl	11
CuO nanoparticles	1430	5.0	0.40 V vs. Ag/AgCl	12
CuO nanowires	648.2	2.0	0.55 V vs. Ag/AgCl	13
Cu nanowires/Cu	490	0.049	0.33 V vs. Ag/AgCl	14
CuO nanofibers	431.3	0.8	0.40 V vs. Ag/AgCl	15
CuO nanoflowers	2657	1.71	0.50 V vs. Ag/AgCl	16

References

S1. X. H. Niu, M. B. Lan, H. L. Zhao, C. Chen, Anal. Chem., 2013, 85, 3561-3569. S2. C. Kong, L. Tang, X. Zhang, S. Sun, S. Yang, X. Song, Z. Yang, J.Mater. Chem. A, 2014, 2, 7306-7312.

S3. Y. Tian, Y. Liu, W. P. Wang, X. Zhang, W. Peng, Electrochim. Acta, 2015, 156, 244-251.

S4. J. Jin, G. Zheng, Y. Ge, S. Deng, W. Liu, G. Hui, Electrochim. Acta, 2015, 153, 594-601.

S5. X. Zhang, S. Sun, J. Lv, L. Tang, C. Kong, X. Song, Z. Yang, J.Mater. Chem. A, 2014, 2, 10073-10080.

S6. L. Xu, Q. Yang, X. Liu, J. Liu, X. Sun, RSC Adv., 2014, 4, 1449-1455.

S7. Z. Z. Li, Y. Chen, Y. M. Xin, Z. H. Zhang, Sci Rep., 2015, 5, 16115.

S8. S. Yuan, X. L. Huang, D. L. Ma, H. G. Wang, F. Z. Meng, X. B. Zhang, Adv. Mater., 2014, 26, 2273–2279.

S9. S.D. Sun, X.Z. Zhang, Y.X. Sun, S.C. Yang, X.P. Song, Z.M. Yang, ACS Appl. Mater. Interfaces, 2013, 5, 4429-4437.

S10. R. Ahmad, M. Vaseem, N. Tripathy, Y.B. Hahn, Anal. Chem., 2013, 85, 10448–10454.

S11. E. Reitz, W.Z. Jia, M. Gentile, Y. Wang, Y. Lei, Electroanalysis, 2008, 20, 2482-2486.

S12. F.Y. Huang, Y.M. Zhong, J. Chen, S.X. Li, Y.C. Li, F. Wang, S. Q. Feng, Anal. Methods., 2013, 5, 3050-3055.

S13. X. Wang, C. G. Hu, H. Liu, G.J. Du, X.S. He, Y.Xi, Sensor Actuat B: Chem, 2010, 144, 220–225.

S14. Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, M.M. Choi, Analyst,2008, 133, 126–132.

S15. W. Wang, L. Zhang, S. Tong, X.Li, W. Song, Biosens.Bioelectron., 2009, 25, 708–714.

S16. S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song, Z. Yang, Phys. Chem. Chem. Phys., 2013, 15, 10904–10913.