Electronic Supplementary Information

Europium complexes: choice of efficient synthetic routes from RM1 thermodynamic quantities as figures of merit

Nathalia B.D. Lima, Anderson I.S. Silva, Vanessa F.C. Santos, Simone M.C. Gonçalves, and Alfredo M. Simas*

*E-mail: simas@ufpe.br

Summary

Characterization	
Infrared Spectra	
¹ H NMR Spectra	7
¹⁹ F NMR Spectra	
³¹ P NMR Spectra	

List of Figures

Figure S1. Infrared spectrum of [EuCl ₂ (TPPO) ₄]Cl.3H ₂ O	3
Figure S2. Infrared spectrum of [EuCl ₂ (DBM)(TPPO) ₃]	3
Figure S3. Infrared spectrum of [EuCl ₂ (TTA)(TPPO) ₃].	4
Figure S4. Infrared spectrum of [EuCl(DBM)(BTFA)(TPPO)2].	4
Figure S5. Infrared spectrum of [EuCl(TTA)(BTFA)(TPPO) ₂]	5
Figure S6. Infrared spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO)2] obtained	via
synthetic route 1.	5
Figure S7. Infrared spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO)2] obtained	via
synthetic route 6.	6
Figure S8. ¹ H NMR spectrum of [EuCl ₂ (TPPO) ₄]Cl _. 3H ₂ O	7
Figure S9. ¹ H NMR spectrum of [EuCl ₂ (DBM)(TPPO) ₃].	7
Figure S10. ¹ H NMR spectrum of [EuCl ₂ (TTA)(TPPO) ₃]	8
Figure S11. ¹ H NMR spectrum of [EuCl(DBM)(BTFA)(TPPO) ₂]	8

Figure S12. ¹ H NMR spectrum of [EuCl(TTA)(BTFA)(TPPO) ₂]	••••••	9
Figure S13. ¹ H NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO) ₂]	obtained	via
synthetic route 1.	••••••	9
Figure S14. ¹ H NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO) ₂]	obtained	via
synthetic route 6.		. 10
Figure S15. ¹⁹ F NMR spectrum of [EuCl ₂ (TTA)(TPPO) ₃]	•••••	. 11
Figure S16. ¹⁹ F NMR spectrum of [EuCl(DBM)(BTFA)(TPPO) ₂]	•••••	. 11
Figure S17. ¹⁹ F NMR spectrum of [EuCl(TTA)(BTFA)(TPPO) ₂]	••••••	. 12
Figure S18. ¹⁹ F NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO) ₂]	obtained	via
synthetic route 1.	••••••	. 12
Figure S19. ¹⁹ F NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO) ₂]	obtained	via
synthetic route 6.	••••••	. 13
Figure S20. ³¹ P NMR spectrum of [EuCl ₂ (TPPO) ₄]Cl.3H ₂ O		. 14
Figure S21. ³¹ P NMR spectrum of [EuCl ₂ (DBM)(TPPO) ₃]	••••••	. 14
Figure S22. ³¹ P NMR spectrum of [EuCl ₂ (TTA)(TPPO) ₃]	••••••	. 15
Figure S23. ³¹ P NMR spectrum of [EuCl(DBM)(BTFA)(TPPO) ₂]		. 15
Figure S24. ³¹ P NMR spectrum of [EuCl(TTA)(BTFA)(TPPO) ₂]	••••••	. 16
Figure S25. ³¹ P NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO) ₂]	obtained	via
synthetic route 1.		. 16
Figure S26. ³¹ P NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO) ₂]	obtained	via
synthetic route 6.		. 17

Characterization

Infrared Spectra

 $[EuCl_3(TPPO)_4].3H_2O$ (KBr disk): υ O-H 3461 cm⁻¹, υ =C-H 3090 cm⁻¹ - 3015 cm⁻¹, and υ P=O 1087 cm⁻¹.

Figure S1. Infrared spectrum of [EuCl₂(TPPO)₄]Cl.3H₂O.

[EuCl₂(DBM)(TPPO)₃] (KBr disk): υ=C-H 3062 cm⁻¹, υC=O 1594 cm⁻¹, υP=O 1148-1128 cm⁻¹.

 $[EuCl_2(TTA)(TPPO)_3]$ (KBr disk): $\upsilon=C-H$ 3056 cm⁻¹, $\upsilon C=O$ 1688 cm⁻¹, $\upsilon P=O$ 1179-1115 cm⁻¹, υC -F 1287 cm⁻¹, and $\upsilon S=C$ 1065 cm⁻¹.

Figure S3. Infrared spectrum of [EuCl₂(TTA)(TPPO)₃].

 $[EuCl(DBM)(BTFA)(TPPO)_2]$ (KBr disk): $\upsilon=C-H$ 3056 cm⁻¹, $\upsilon C=O$ 1681 cm⁻¹, $\upsilon P=O$ 1179-1116 cm⁻¹, and υC -F 1287 cm⁻¹.

Figure S4. Infrared spectrum of [EuCl(DBM)(BTFA)(TPPO)₂].

 $[EuCl(TTA)(BTFA)(TPPO)_2] (KBr disk): \upsilon=C-H 3062 cm^{-1}, \upsilon C=O 1599 cm^{-1}, \upsilon P=O 1154-1116 cm^{-1}, \upsilon C-F 1185 cm^{-1}, and \upsilon S=C 1084 cm^{-1}.$

Figure S5. Infrared spectrum of [EuCl(TTA)(BTFA)(TPPO)₂].

 $[Eu(DBM)(BTFA)(TTA)(TPPO)_2] (KBr disk): \upsilon=C-H 3056 cm^{-1}, \upsilon C=O 1681 cm^{-1}, \upsilon P=O 1179-1116 cm^{-1}, \upsilon C-F 1294 cm^{-1}, and \upsilon S=C 1065 cm^{-1}.$

Figure S6. Infrared spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO)₂] obtained via synthetic route 1.

 $[Eu(DBM)(BTFA)(TTA)(TPPO)_2]$ (KBr disk): $\upsilon=C-H$ 3056 cm⁻¹; $\upsilon C=O$ 1612-1593 cm⁻¹; $\upsilon P=O$ 1166-1122 cm⁻¹; υC -F 1281 cm⁻¹; $\upsilon S=C$ 1071 cm⁻¹.

Figure S7. Infrared spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO)₂] obtained via synthetic route 6.

¹H NMR Spectra

¹H NMR (400 MHz, CDCl₃): δ7.81 ppm (s, CH), and δ 7.56–7.36 ppm (m, Ar). Figure S9. ¹H NMR spectrum of [EuCl₂(DBM)(TPPO)₃].

¹**H** NMR (400 MHz, CDCl₃): δ 8.16 ppm (s, CH), δ 7.65–6.14 ppm (m, Ar), and δ 7.21–6.14 ppm (m, Th).

Figure S10. ¹H NMR spectrum of [EuCl₂(TTA)(TPPO)₃].

¹H NMR (400 MHz, CDCl₃): δ 7.94 ppm (s, CH) and δ 7.57–7.44 ppm (m, Ar). Figure S11. ¹H NMR spectrum of [EuCl(DBM)(BTFA)(TPPO)₂].

δ 6.87–6.38 ppm (m, Th).

Figure S12. ¹H NMR spectrum of [EuCl(TTA)(BTFA)(TPPO)₂].

¹H NMR (400 MHz, CDCl₃): δ 8.21 ppm, and (s, CH), δ 7.63–7.29 ppm (m, Ar). Figure S13. ¹H NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO)₂] obtained via synthetic route 1.

¹**H NMR (400 MHz, CDCl₃):** δ 7.77 ppm (s, CH), and δ 7.57–7.45 ppm (m, Ar). **Figure S14.** ¹H NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO)₂] obtained via synthetic route 6.

¹⁹F NMR Spectra

¹⁹F NMR (376 MHz, CDCl₃): δ –81 ppm; and δ –82 ppm. Figure S16. ¹⁹F NMR spectrum of [EuCl(DBM)(BTFA)(TPPO)₂].

¹⁹F NMR (376 MHz, CDCl₃): δ –79 ppm, and δ –80 ppm. S18 ¹⁹E NMR spectrum of [Eu(DBM)(BTEA)(TTA)(TPPO)a] obtain

Figure S18. ¹⁹F NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO)₂] obtained via synthetic route 1.

¹⁹F NMR (376 MHz, CDCl₃): δ –78 ppm, and δ –80 ppm. Figure S19. ¹⁹F NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO)₂] obtained via synthetic route 6.

³¹P NMR Spectra

³¹P NMR (162 MHz, CDCl₃): δ 23 ppm, and δ –76 ppm. Figure S21. ³¹P NMR spectrum of [EuCl₂(DBM)(TPPO)₃].

³¹P NMR (162 MHz, CDCl₃): δ 20 ppm, and δ –80 ppm. Figure S23. ³¹P NMR spectrum of [EuCl(DBM)(BTFA)(TPPO)₂].

³¹**P** NMR (162 MHz, CDCl₃): δ 25 ppm, and δ –78 ppm.

Figure S25. ³¹P NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO)₂] obtained via synthetic route 1.

³¹P NMR (162 MHz, CDCl₃): δ 27 ppm, and δ –73 ppm. Figure S26. ³¹P NMR spectrum of [Eu(DBM)(BTFA)(TTA)(TPPO)₂] obtained via synthetic route 6.