Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Investigation of the Dinuclear Effect of Aluminum Complexes in the Ring-Opening Polymerization of ε-Caporlactone

Chiao-Yin Hsu,^{*a*} Hsi-Ching Tseng,^{*a*} Jaya Kishore Vandavasi,^{*c*} Wei-Yi Lu,^{*a*} Li-Fang Wang,^{*a*} Michael Y. Chiang,^{*a*,*b*} Yi-Chun Lai,^{*a*} Hsing-Yin Chen,^{*a**} Hsuan-Ying Chen,^{*a**}

- a Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.
- b Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, R.O.C.
- c Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C.

Electronic supplementary information available: Polymer characterization data, and details of the

kinetic study.

Table of Contents

Table S1 . The kinetic study of polymerizations of ε -caprolactone using various Al	complexes as
catalysts	2
Figure S1. First-order kinetic plots of ε -caprolactone polymerizations with various	Al complexes plotted
against time	
Table S2 . The kinetic study of polymerizations of ε -caprolactone using various cor	centration of L ^{N2Bu} -
Al ₂ Me ₄ as a catalyst	4
Figure S3 First-order kinetic plots of CL polymerizations with various $[L^{N2Bu}-Al_2N]$	[le4] plotted against
time	5
Figure S4-S16. ¹ H NMR and ¹³ C spectra of L ^{CIBu} -H and all Al complexes	
Figure S17. 1H NMR spectra of (A) benzyl alcohol; (B) L ^{N2Bu} -Al ₂ Me ₄ ; (C) the mi	xture of benzyl alcohol
and L^{N2Bu} -Al ₂ Me ₄ (4:1) in CDCl ₃ after 10 min; (D) the mixture of benz	yl alcohol and L^{N2Bu} -
Al_2Me_4 (4:1) in CDCl ₃ after 1 h	12

Time/min	L ^{N2Bu} -Al ₂ Me ₄	L ^{N-NH} -Al ₂ Me ₄	L ^{N-NBu} -Al ₂ Me ₄	L ^{CIH} -AlMe ₂	L ^{CIBu} -AlMe ₂	L ^{Bu} -AlMe ₂	L ^{Bn} -AlMe ₂	
	Conversion of CL							
10	0.08	0.04		0.04	0.03	0.02		
20	0.33	0.14		0.07	0.05	0.04		
30	0.52	0.23		0.10	0.12	0.07		
40	0.67	0.33		0.12	0.15	0.1		
50	0.76	0.41	0.07	0.18	0.22	0.13		
60	0.80	0.46	0.09	0.22	0.28	0.17		
90	0.88	0.58	-			0.28		
120		0.68	0.20		0.64	0.42		
180		0.77	0.29			0.6		
190					0.82			
205							0.09	
210			0.36					
230					0.95			
240			0.41					
270			0.43					
300							0.18	
360						0.9		
720				0.99				
1110							0.78	
1220							0.81	
1330			1.00					
1395		0.95						
1440							0.84	
2560							0.97	

Table S1. The kinetic study of polymerizations of ε -caprolactone using various Al complexes as catalysts

$k_{obs} \times 10^3$	26.08 (220)	8.54 (49)	2.30 (8)	6.52 (7)	9.79 (43)	6.54 (26)	1.40 (51)
Induction period/mi n	1.86 (417)	0	20.42 (623)	14.56 (314)	17.96 (377)	25.93 (574)	112 (50)
R ²	0.9827	0.989	0.997	0.999	0.994	0.993	0.997

Figure S1. First-order kinetic plots of ε -caprolactone polymerizations with various Al complexes plotted against time ($\blacksquare L^{N2Bu}-Al_2Me_4$, $\bullet L^{N-NH}-Al_2Me_4$, $\blacktriangle L^{N-NBu}-Al_2Me_4$, $\checkmark L^{CIH}-AlMe_2$, $\checkmark L^{CIBu}-AlMe_2$, $\triangleright L^{Bu}-AlMe_2$, $\diamond L^{Bu}-AlMe_2$)

Table S2. The kinetic study of polymerizations of ϵ -caprolactone using various concentration of L^{N2Bu} -

Time (min)	[L ^{N2Bu} -Al ₂ Me ₄]				
	0.50 M	1.00 M	2.00 M	4.00 M	
	Conversion of CL				
1				0.02	
3				0.09	
4				0.21	
5				0.36	
6			0.12	0.50	
7				0.61	
8			0.24		
10		0.08	0.38	0.85	
12			0.5		
13				0.9	
14			0.61		
16			0.69	0.97	
18			0.77		
20	0.05	0.33	0.84	0.99	
25			0.88		
30	0.07	0.52	0.97		
40	0.10	0.67			
50	0.12	0.76			

 $\mathbf{Al}_2\mathbf{Me}_4$ as a catalyst and BnOH as an initiator

60	0.14	0.80		
90		0.88		
130	0.35			
1000	0.96			
$k_{obs} \times 10^3$	3.24 (2)	26.08 (220)	132.92 (881)	254.14 (1271)
Induction period/min	6.89 (247)	1.86 (417)	6.41 (1.16)	2.70 (52)
R ²	0.999	0.9827	0.983	0.990

Figure S2. First-order kinetic plots of CL polymerizations with various $[L^{N2Bu}-Al_2Me_4]$ plotted against time (= 0.50 M, • 1.00 M, \triangle 2.00 M, \vee 4.00 M)

Figure S3. ¹H NMR spectrum of L^{N2Bu} -Al₂Me₄

Figure S5. ¹H NMR spectrum of L^{N-NH}-Al₂Me₄

Figure S9. ¹H NMR spectrum of L^{CIH} - AlMe₂

Figure S10. $^{13}\mathrm{C}$ NMR spectrum of LCIH- AlMe_2

Figure S11. ¹H NMR spectrum of L^{CIBu}- AlMe₂

Figure S12. ¹³C NMR spectrum of L^{CIBu} - AlMe₂

Figure S13. ¹H NMR spectrum of L^{ClBu} - AlMe₂

Figure S16. ¹³C NMR spectrum of L^{CIBu}-H

Figure S17. 1H NMR spectra of (A) benzyl alcohol; (B) $L^{N2Bu}-Al_2Me_4$; (C) the mixture of benzyl alcohol and $L^{N2Bu}-Al_2Me_4$ (4:1) in CDCl₃ after 10 min; (D) the mixture of benzyl alcohol and $L^{N2Bu}-Al_2Me_4$ (4:1) in CDCl₃ after 1 h.