Supplementary Materials:

Facile rapid synthesis of nanocrystalline Cu₂Te multi-phase transition material and its thermoelectric performance

Yuchong Qiu^a, Jinwen Ye^{a,b*}, Ying Liu^{a,b}, Xiaojiao Yang^{a,b}

^a College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P.R. China;

^b Key Laboratory of Advanced Special Materials and Technology, Ministry of Education, Chengdu 610065, P.R. China

^{*} Corresponding author. E-mail: yjw550@163.com

Figure S 1. XRD patterns of: (1#) SPS sintered sample; (2#) SPS followed by annealing for 10 h; (3#) SPS followed by annealing for 20 h; (4#) SPS followed by annealing for 30 h; (5#) SPS followed by annealing for 40 h.

Figure S 2. SEM images of: (a) low magnification of 3# sample; (b) low magnification of 4# sample; (c) low magnification of 5# sample; (d) high magnification of 3# sample; (e) high magnification of 4# sample; (f) high magnification of 5# sample.

Figure S 3. XRD pattern of the powders attached to the surface of annealed samples.

Figure S 4. TEM image of nanocrystalline Cu_2Te along with dark filed STEM image and EDS elemental mapping.

			1 1	-	
	1#	2#	3#	4#	5#
Cu (wt.%)	49.37	49.11	48.71	47.69	46.63
Cu (at.%)	66.20	65.96	65.60	64.67	63.70
Te (wt.%)	50.63	50.89	51.29	52.31	53.37
Te (at.%)	33.80	34.04	34.40	35.33	36.30
Cu:Te (at.)	1.96	1.94	1.91	1.83	1.75

Table S 1. EDS results of each prepared Cu_2Te bulk