Enhancing proliferation of MC3T3-E1 cells on Casein phosphopeptide-biofunctionalized 3D reduced-graphene oxide/polypyrrole scaffold ## Support Information Weibo Jie,^{a,d}† Fuxiang Song,^{b,c}† Xiaocheng Li,^c Wen Li,^b Rui Wang,^b Yanjiao Jiang,^b Libo Zhao,^b Zengjie Fan,^b Jizeng Wang,^{a*} Bin Liu,^{b*} - a. Key Laboratory of Mechanics on Disaster and Environment in Western China, the Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China. Email: jzwang@lzu.edu.cn - b. School of Stomatology of Lanzhou university. Lanzhou 730000, China. Email: liubkq@lzu.edu.cn - c. Laboratory of Clean Energy chemistry and Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences. Lanzhou, China, 730000. Email: xiaocheng@licp.cas.cn - d. Lanzhou university second hospital, Lanzhou 730000, China. Email: jiewb@lzu.edu.cn - † These authors contributed equally to this work. Fig. S1 Low-magnification SEM images of 3D rGO/PPY (the first row), 3D rGO/PPY/CPP10 (the second row), and 3D rGO/PPY/CPP20 (the third row) composite scaffolds after being soaked in $1.5 \times SBF$ at 37 °C for 1 d, 3 d, 5 d, and 7 d, respectively. Fig. S2 Growth mechanism of HA on backbone of the CPP-modified 3D rGO/PPY scaffold.