Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Sorghum core-derived carbon sheets as electrodes for lithium-ion

capacitor

Xiaonan Xu, Yongpeng Cui, Jing Shi,* Wei Liu, Shougang Chen, Xin Wang, and Huanlei Wang*

Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.

Email: shijing@ouc.edu.cn (J. Shi); huanleiwang@gmail.com (H. Wang).

Fig. S1 XPS spectra of SCDCS.

Table S1 Physical parameters of SCDCS.

Sample	S_{BET} $(m^2g^{-1})^a$	V _t (cm ³ g ⁻¹) ^b	pore vol (%)°			<i>d</i> ₀₀₂ (nm)	<i>L_a</i> (nm)	<i>L_c</i> (nm)	L_c (nm) I_G/I_D		XPS composition (at%)		
			$V_{<1 nm}$	V 1-2 nm	$V_{\geq 2 nm}$	- ()		()	0 2	С	N	0	
SCDCS	1122	0.65	31.62	28.13	40.25	0.35	0.73	0.61	0.56	93.82	0.29	5.89	

^a Specific surface area was calculated by Brunauer-Emmett-Teller (BET) method.

^b The total pore volume was determined by density functional theory (DFT) method.

^c The volume proportions of pores smaller than 1 nm ($V_{<1nm}$), pores between 1 and 2 nm (V_{1-2nm}), and pores larger than 2 nm ($V_{>2nm}$) were also obtained by DFT analysis.

Fig. S2 The specific capacity in different voltage ranges. Positive: the discharge potential range from 4.5 V vs. Li/Li^+ to 1.4 V vs. $Li/Li^+\sim 0.9$ V vs. Li/Li^+ . Negative: the charge potential range from 0.01V vs. Li/Li^+ to 0.9 V vs. $Li/Li^+\sim 1.4$ vs. Li/Li^+ . At the desired voltage, which is 1.07 V vs. Li/Li^+ , both of positive and negative electrodes have equal capacity.

Fig. S3 Specific capacitance at current density ranging from 0.1 to 50 A g⁻¹.

Sample	Energy density	Power density	Cycling stability	Voltag e	Ref.
SCDCS//SCDCS	124.8 W h kg ⁻¹ at 107.4W kg ⁻¹	10507.9 W kg ⁻¹ at 59.5 W h kg ⁻¹	66%, 5000 cycles (10 A g ⁻¹)	0-4.3V	This work
SFAC//SFAC	83 W h kg ⁻¹ at 128W kg ⁻¹	5718 W kg ⁻¹ at 41 W h kg ⁻¹	88%, 5000 cycles (1 A g ⁻¹)	2-4V	1
MFC//3DaC	157 W h kg ⁻¹ at 200 W kg ⁻¹	20000 W kg ⁻¹ at 58 W h kg ⁻¹	86.5%,6000 cycles (2 A g ⁻¹)	0.01-4V	2
PHPNC//TiC	101.5 W h kg ⁻¹ at 450 W kg ⁻¹	67500 W kg ⁻¹ at 23.4 W h kg ⁻¹	≈82%,5000 cycles (2 A g ⁻¹)	0-4.5	3
CPIM//AC	28.5 W h kg ⁻¹ at 348 W kg ⁻¹	6940 W kg ⁻¹ at 13.1 W h kg ⁻¹	97.1%,5000cycles (0.5 A g ⁻¹)	2-4V	4
HC//AC (LIC-IH)	100.5 W h kg ⁻¹ at 6200 W kg ⁻¹	7800 W kg ⁻¹ at 80.9 W h kg ⁻¹	96.0%,5000cycles (2 C)	2-4V	5
TiO ₂ -rGO//AC	42 W h kg ⁻¹ at 800 W kg ⁻¹	8000 W kg ⁻¹ at 8.9 W h kg ⁻¹	80%, 100 cycles (0.4 A g ⁻¹)	1-3V	6
TiO ₂ -B //AC	$23 \mathrm{~W} \mathrm{~h} \mathrm{~kg}^{-1}$	2800 W kg $^{-1}$	73%,1200cycles (1.5 A g ⁻¹)	0-2.8V	7
Graphene-VN //carbon nanorods	162 W h kg ⁻¹ at 200 W kg ⁻¹	10000 W kg ⁻¹ at 64 W h kg ⁻¹	≈83%, 1000 cycles (2 A g ⁻¹)	0-4V	8
B-Si/SiO ₂ /C//AC	128 W h kg ⁻¹ at 1229 W kg ⁻¹	9704 W kg ⁻¹ at 89 W h kg ⁻¹	70%, 6000 cycles (1.6 A g ⁻¹)	2-4.5V	9
H ₂ Ti ₁₂ - xNb _x O ₂₅ //AC	24.3 W h kg ⁻¹ at 1794.6 W kg ⁻¹	5821.3 W kg ⁻¹ at 11.3 W h kg ⁻¹	84%, 1000 cycles (3.0 A g ⁻¹)	0-2.8V	10
3D-MnO//CNS	184 W h kg ⁻¹ at 83 W kg ⁻¹	15000 W kg ⁻¹ at 90 W h kg ⁻¹	76%, 5000 cycles (5 A g ⁻¹)	1-4V	11

 Table S2 Some recent reports on the performance of lithium ion capacitors.

Fig. S4 (a) CV curves of SCDCS//SCDCS lithium ion capacitor without tuning the potentials at different scan rates. (b) Galvanostatic charge/discharge profiles of SCDCS//SCDCS lithium ion capacitor without tuning the potentials at different current densities.

Fig. S5 Cycling stability of SCDCS//SCDCS lithium ion capacitor measured at 10 A g⁻¹.

Fig. S6 Nyquist plots of SCDCS//SCDCS lithium ion capacitors before and after 5000 cycles.

References

- 1 Z. Yang, H. Guo, X. Li, Z. Wang, Z. Yan and Y. Wang, *J. Power Sources*, 2016, **329**, 339-346.
- W. S. V. Lee, E. Peng, M. Li, X. Huang and J. M. Xue, *Nano Energy*, 2016, 27, 202-212.
- H. W. Wang, Y. Zhang, H. X. Ang, Y. Q. Zhang, H. T. Tan, Y. F. Zhang, Y. Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, H. J. Fan and Q. Y. Yan, *Adv. Funct. Mater.*, 2016, 26, 3082-3093.
- 4 X. Han, P. Han, J. Yao, S. Zhang, X. Cao, J. Xiong, J. Zhang and G. Cui, *Electrochim. Acta*, 2016, **196**, 603-610.
- 5 J. Zhang, X. Liu, J. Wang, J. Shi and Z. Shi, *Electrochim. Acta*, 2016, **187**, 134-142.
- 6 H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K. C. Roh and K. Kang, *Adv. Energy Mater.*, 2013, **3**, 1500-1506.
- 7 V. Aravindan, N. Shubha, W. C. Ling and S. Madhavi, *J. Mater. Chem. A*, 2013, **1**, 6145.
- 8 R. Wang, J. Lang, P. Zhang, Z. Lin and X. Yan, *Adv. Funct. Mater.*, 2015, **25**, 2270-2278.
- 9 R. Yi, S. Chen, J. Song, M. L. Gordin, A. Manivannan and D. Wang, *Adv. Funct. Mater.*, 2014, **24**, 7433-7439.
- 10 J. H. Lee, H.-K. Kim, E. Baek, M. Pecht, S.-H. Lee and Y.-H. Lee, *J. Power Sources*, 2016, **301**, 348-354.
- H. Wang, Z. Xu, Z. Li, K. Cui, J. Ding, A. Kohandehghan, X. Tan, B. Zahiri,B. C. Olsen, C. M. Holt and D. Mitlin, *Nano Lett.*, 2014, 14, 1987-1994.