Supporting Information

Iron phosphide nanocrystals in situ decorated on heteroatom-doped mesoporous carbon nanosheets for efficient oxygen reduction reaction in both alkaline and acidic media

Xueyan Xu, Chengxiang Shi, Rui Chen and Tiehong Chen*

School of Materials Science and Engineering, Institute of New Catalytic Materials Science Institute of New Catalytic Materials Science, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071

* E-mail: chenth@nankai.edu.cn

Table S1. BET surface areas and total pore volumes of FeP@PNC obtained at

Samples	T(°C) ^a	$S_{BET}(m^2g^{\text{-}1})^{\text{b}}$	$V_{total}(cm^3 g^{-1})^c$
FeP@PNC-800	800	152	0.70
FeP@PNC-900	900	724	1.62
FeP@PNC-1000	1000	571	1.09

different carbonization temperatures

^a Carbonization temperature.

^b BET specific surface areas obtained from N₂ adsorption isotherm in the range of $P/P_0 = 0.05-0.3$.

^c Total pore volume was obtained at P/P_0 of 0.98.

Table S2. XPS data for the surface species of FeP@PNC-T materials obtained at the

Samples	C (at. %)	N (at. %)	P (at. %)	Fe (at. %)	O (at. %)
FeP@PNC-800	32.41	29.04	16.41	4.58	17.56
FeP@PNC-900	81.37	4.21	3.59	1.24	9.59
FeP@PNC-1000	89.22	3.10	1.43	0.49	5.76
FeP@PNC-900-BL	81.53	4.10	1.59	0.78	12.0

different temperatures

 Table S3. XPS data for the surface species of FeP@PNC-T materials obtained at the

different temperatures and the	r content of carbon	and nitrogen	species

Sample	C1 (%)	C2 (%)	C3 (%)	C4 (%)	pyridinic-N (%)	graphitic-N (%)	oxidized-N (%)
FeP@PNC-800	47.09	42.02	10.89	-	52.62	40.73	6.65
FeP@PNC-900	58.28	33.59	5.56	2.57	46.0	46.52	7.48
FeP@PNC-1000	67.14	22.44	7.70	2.72	41.36	49.12	9.52
FeP@PNC-900-BL	61.71	20.03	5.50	4.76	41.33	49.60	9.07

Table S4. The data of catalytic activity for FeP@PNC-T in 0.1 M KOH solution

Samples	Onset-potential	Half-wave	Ja
	V (vs. Ag/AgCl)	potential	(mA cm ⁻²)
FeP@PNC-800	-0.110	-0.473	0.017
FeP@PNC-900	-0.054	-0.138	2.813
FeP@PNC-1000	0.062	-0.191	1.926
FeP@PNC-900-BL	0.013	-0.188	1.819
Pt/C	0.067	-0.155	2.375

^a The diffusion (J) limiting current density at -0.15 V determined at the polarization curve at

1600rpm in 0.1 M KOH solution

Samples	Onset-potential	Half-wave	Ja
	V (vs. Ag/AgCl)	potential	(mA cm ⁻²)
FeP@PNC-800	0.366	-0.067	0.510
FeP@PNC-900	0.576	0.487	4.310
FeP@PNC-1000	0.557	0.456	3.662
FeP@PNC-900-BL	0.520	0.361	2.623
Pt/C	0.634	0.547	4.247

Table S5. The data of catalytic activity for FeP@PNC-T in 0.5 M H_2SO_4 solution

^a The diffusion (*J*) limiting current density at 0.35 V determined at the polarization curve at

1600rpm in 0.5 M H_2SO_4 solution

Fig. S1 (a) Nitrogen adsorption-desorption isotherms of FeP@PNC samples prepared at different carbonization temperature of 800, 900 and 1000°C, respectively; (b) the corresponding pore size distribution curves.

Fig. S2 Wide XPS survey of the FeP@PNC samples prepared at different carbonization temperature of 800, 900 and 1000°C, respectively.

Fig. S3 High-resolution (a) C1s, (b) N1s, (c) P 2p and (d) Fe 2p spectra of the FeP@PNC-900.

Fig. S4 Wide XPS survey of the FeP@PNC-900-BL samples.

Fig. S5 High-resolution (a) C1s, (b) N1s, (c) P 2p and (d) Fe 2p spectra of the FeP@PNC-900-BL.

Fig. S6 TEM images of (a)FeP@PNC-900 and (b) FeP@PNC-900-BL