
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

3.1. Properties of TiO₂ nanoparticles

Fig. 1 XPS spectra for Ti 2p of a. TiO₂ purchased from Aladdin; b. TiO₂ synthesized from TBOT; and c. TiO₂ in the in-situ synthesized TFN membranes

The XPS image in Fig. 1 shows the Ti 2p spectra of TiO₂ NPs (Aladdin), TiO₂ NPs generated by TBOT hydrolysis, and TiO₂ in the in-situ TFN membranes. Generally, the binding energy of titanium dioxide is 458.7 eV at Ti $2p^{2/3}$ and 464.6 eV at Ti $2p^{1/2}$, which were similar to the values observed for each type of TiO₂ particle. As shown in Fig. 2, the peak values of the TiO₂ synthesized from TBOT and that in the in-situ synthesized TFN membranes were very close that of TiO₂ purchased from a commercial source, indicating that TiO₂ particles were produced from TBOT during membrane fabrication. The fixation of in-situ synthesized TiO₂ in the polyamide layer was very stable because of Ti⁴⁺ coordination and H-bonding between carboxyl groups and TiO₂ nanoparticles, which enhanced water flux while maintaining reasonable rejection performance.

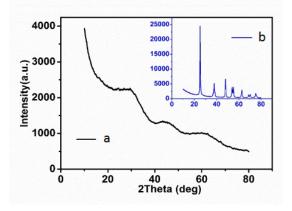


Fig. 2 XRD spectra of a. TiO_2 nanoparticles synthesized from TBOT and b. TiO_2 nanoparticles purchased from Aladdin

The crystal type of the TiO_2 nanoparticles was further confirmed by XRD analysis. TiO_2 synthesized in-situ from TBOT did not show an obvious characteristic peak, indicating that the TiO_2 in the TFN membranes was in an amorphous state. Crystal TiO_2 can be formed by high-temperature calcination, but the in-situ synthesis procedure only involved heating TiO_2 at 80 °C, so crystallization was not achieved. To the best of our knowledge,

only a few studies have reported that the type of TiO_2 used in the membrane synthesis process influenced membrane performance. For example, the effects of different types of nanocrystalline materials (including rutile and anatase) on the performance and antifouling properties of ultrafiltration and nanofitration membranes have been reported^{1,2}. However, the effects of amorphous TiO_2 on membrane performance and other membrane properties have not been studied systematically.

- V. Vatanpour, S. S. Madaeni, A. R. Khataee, E. Salehi, S. Zinadini and H. A. Monfared, *Desalination*, 2012, **292**, 19-29.
- 2. X. Cao, J. Ma, X. Shi and Z. Ren, *Applied Surface Science*, 2006, **253**, 2003-2010.