Supporting information

Hybrid flavan-flavanones from *Friesodielsia desmoides* and their inhibitory activities against nitric oxide production

Pornphimol Meesakul,^a Khanitha Pudhom,^b Stephen G. Pyne,^c Surat Laphookhieo^{*,a}

^aNatural Products Research Laboratory, School of Science, Mae Fah Luang University, Chiang Rai,

57100, Thailand

^bDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand

^cSchool of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522 Australia

Corresponding Author E-mail: surat.lap@mfu.ac.th

Contents

Figure S1. ¹ H NMR (400 MHz, acetone- d_6) spectrum of compound 1	3
Figure S2. ¹³ C NMR (100 MHz, acetone- d_6) spectrum of compound 1	3
Figure S3. COSY NMR spectrum (acetone- d_6) of compound 1	4
Figure S4. HMQC NMR spectrum (acetone- d_6) of compound 1	4
Figure S5. HMBC NMR spectrum (acetone- d_6) of compound 1	5
Figure S6. NOESY spectrum (acetone- d_6) of compound 1	5
Figure S7. HRESIMS spectrum of compound 1	6
Figure S8. ¹ H NMR (400 MHz, acetone- d_6) spectrum of compound 2	6
Figure S9. ¹ H NMR (400 MHz, acetone- d_6) spectrum of compound 2	7
S10. Comparison of ¹ H NMR spectrum (400 MHz) of compound 2	
in methanol- d_4 and acetone- d_6	7
Figure S11. ¹³ C NMR (100 MHz, acetone- d_6) spectrum of compound 2	8
Figure S12. COSY NMR spectrum (acetone- d_6) of compound 2	8
Figure S13. HMQC NMR spectrum (acetone- d_6) of compound 2	9
Figure S14. HMBC NMR spectrum (acetone- d_6) of compound 2	9
Figure S15. NOESY spectrum (acetone- d_6) of compound 2	10
Figure S16. HRESIMS spectrum of compound 2	10
Figure S17. ¹ H NMR (400 MHz, acetone- d_6) spectrum of compound 3	11
Figure S18. ¹³ C NMR (100 MHz, acetone- d_6) spectrum of compound 3	11
Figure S19. COSY NMR spectrum (acetone- d_6) of compound 3	12
Figure S20. HMQC NMR spectrum (acetone- d_6) of compound 3	12
Figure S21. HMBC NMR spectrum (acetone- d_6) of compound 3	13
Figure S22. NOESY spectrum (acetone- d_6) of compound 3	13
Figure S23. HRESIMS spectrum of compound 3	14
Table S1. ¹ H, ¹³ C and HMBC NMR spectroscopic data of compound 1 in acetone- d_6	15
Table S2. ¹ H, ¹³ C and HMBC NMR data spectroscopic of compound 2 in acetone- d_6	16
Table S3. ¹ H, ¹³ C and HMBC NMR data spectroscopic of compound 3 in acetone- d_6	17

S2. ¹³C NMR spectrum (100 MHz, acetone- d_6) of compound **1**

S3. COSY NMR spectrum (acetone- d_6) of compound **1**

S4. HMQC NMR spectrum (acetone- d_6) of compound **1**

S5. HMBC NMR spectrum (acetone- d_6) of compound **1**

S6. NOESY spectrum (acetone- d_6) of compound **1**

S7. HRESIMS spectrum of compound 1

S8. ¹H NMR spectrum (400 MHz, acetone- d_6) of compound 2

S9. ¹H NMR spectrum (400 MHz, methanol- d_4) of compound **2**

S10. Comparison of ¹H NMR spectra of compound **2** (400 MHz) in methanol- d_4 and acetone- d_6

للسمي	3	60.71	00	539.1594	680.	6106766.56	646,868.502	21 10	075.2921	1152.394	44 12	82.265	7_1388	.6354
200 30	00	400	500	600	700	800	900	1000	1100	1200	130	0 1	400	1500
			5.0	10.0		-1.5 120.0								
Calc.	Mass		mDa	PPM		DBE	i-FIT		i-FIT	(Norm)	Form	nula		
537.15 537.15 537.14	509 549 491		2.0 -2.0 3.8	3.7 -3.7 7.1	_	16.5	145.2 141.5		3.8		C27 C32	H25 H25	N2 08	010
	200 3 Calc. 537.1 537.1 537.1	200 300 Calc. Mass 537.1509 537.1549 537.1491	200 300 400 Calc. Mass 537.1509 537.1549 537.1491	200 300 400 500 5.0 Calc. Mass mDa 537.1509 2.0 537.1549 -2.0 537.1491 3.8	360.7100 539.1594 200 300 400 500 600 5.0 10.0 Calc. Mass mDa PPM 537.1509 2.0 3.7 537.1549 -2.0 -3.7 537.1491 3.8 7.1	360.7100 539.1594 680. 200 300 400 500 600 700 5.0 10.0 Calc. Mass mDa PPM 537.1509 2.0 3.7 537.1549 -2.0 -3.7 537.1549 -2.0 -3.7 537.1491 3.8 7.1	360.7100 539.1594 680.6106 766.50 200 300 400 500 600 700 800 5.0 10.0 120.0 120.0 120.0 120.0 120.0 Calc. Mass mDa PPM DBE 537.1509 2.0 3.7 16.5 537.1549 -2.0 -3.7 20.5 537.1491 3.8 7.1 29.5	360.7100 539.1594 680.6106 766.5646.868.502 200 300 400 500 600 700 800 900 -1.5 5.0 10.0 120.0 -1.5 120.0 -1.5 Calc. Mass mDa PFM DBE i-FIT 537.1509 2.0 3.7 16.5 145.2 537.1549 -2.0 -3.7 20.5 141.5 537.1491 3.8 7.1 29.5 144.1	360.7100 539.1594 680.6106 766.5645.868.5021 10 200 300 400 500 600 700 800 900 1000 -1.5 5.0 10.0 120.0 -1.5 10.0 120.0 Calc. Mass mDa PPM DBE i-FIT 537.1509 2.0 3.7 16.5 145.2 537.1549 -2.0 -3.7 20.5 141.5 537.1491 3.8 7.1 29.5 144.1	360.7100 539.1594 680.6106 _{766.5646.868.5021} 1075.2921 200 300 400 500 600 700 800 900 1000 1100 -1.5 5.0 10.0 120.0 -1.5 1075.2921 1075.2921 Calc. Mass mDa PFM DBE i-FIT i-FIT 537.1509 2.0 3.7 16.5 145.2 3.8 537.1549 -2.0 -3.7 20.5 141.5 0.1 537.1491 3.8 7.1 29.5 144.1 2.7	360.7100 539.1594 680.6106 _{766.5646.868.5021} 1075.2921 1152.394 200 300 400 500 600 700 800 900 1000 1100 1200 -1.5 5.0 10.0 120.0 -1.5 1075.2921 1152.394 Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) 537.1509 2.0 3.7 16.5 145.2 3.8 537.1549 -2.0 -3.7 20.5 141.5 0.1 537.1491 3.8 7.1 29.5 144.1 2.7	360.7100 539.1594 680.6106 _{766.5646.868.5021} 1075.2921 1152.3944 122 200 300 400 500 600 700 800 900 1000 1100 1200 130 -1.5 5.0 10.0 120.0 -1.5 10.0 120.0 130 Calc. Mass mDa PFM DBE i-FIT i-FIT (Norm) Form 537.1509 2.0 3.7 16.5 145.2 3.8 C27 537.1549 -2.0 -3.7 20.5 141.5 0.1 C32 537.1491 3.8 7.1 29.5 144.1 2.7 C39	360.7100 539.1594 680.6106 _{766.5646.868.5021} 1075.2921 1152.3944 1282.265 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1 -1.5 5.0 10.0 120.0 1000 1100 1200 1300 1 Calc. Mass mDa PFM DBE i-FIT i-FIT (Norm) Formula 537.1509 2.0 3.7 16.5 145.2 3.8 C27 H25 537.1549 -2.0 -3.7 20.5 141.5 0.1 C32 H25 537.1491 3.8 7.1 29.5 144.1 2.7 C39 H21	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

S16. HRESIMS spectrum of compound **2**

S17. ¹H NMR spectrum (400 MHz, acetone- d_6) of compound **3**

S18. ¹³C NMR spectrum (100 MHz, acetone- d_6) of compound **3**

S23. HRESIMS spectrum of compound 3

Position	Friesodielsone A (1)					
1 00101011	$\delta_{\rm C}$	$\delta_{\rm H}(J \text{ in Hz})$	HMBC ($^{1}H \rightarrow {}^{13}C$)			
2	76.7	5.53 (dd, 3.5, 10.0)	C-3, C-4,C-1', C-2', C-6'			
3	37.9	2.24-2.33 (m)	C-2, C-4, C-10, C-6			
4	26.1	4.67 (dd, 2.6, 5.4)	C-2, C-3,C-9, C-10, C-5, C-6, C-7			
5	162.1	-	-			
6	94.9	5.90 (s)	C-7, C-8			
7	164.8	-	-			
8	105.9	-	-			
9	160.6	-	-			
10	104.7	-	-			
11	192.1	10.10 (s)	C-6, C-7, C-8			
1′	142.5	-	-			
2',6'	126.8	7.44-7.47 (m)	C-2, C-1', C-3', C-5'			
3',5'	129.4	7.40-7.42 (m)	C-1', C-2', C-4', C-6'			
4′	128.6	7.30-7.34 (m)	C-2', C-3', C-5', C-6'			
2''	79.9	5.57 (dd, 3.0, 13.5)	C-4", C-1"", C-2"", C-6""			
3''	43.7	2.80 (dd, 3.0, 17.1)	C-2", C-4", C-10", C-5"			
		3.16 (dd, 13.5, 17.1)	C-2", C-4", C-10", C-5"			
4''	197.0	-	-			
5''	163.1	-	-			
6''	111.9	-	-			
7''	165.2	-	-			
8''	95.9	6.08 (s)	C-6", C-7", C-9"			
9''	162.1	-	-			
10''	103.1	-	-			
	140.2	-	-			
2′′′,6′′′	127.8	7.56-7.58 (m)	C-2''', C-1''', C-3''', C-5'''			
3′′′,5′′′	129.5	7.43-7.47 (m)	C-1''', C-2''', C-4''', C-6'''			
4′′′	129.4	7.40-7.43 (m)	C-2''', C-3''', C-5''', C-6'			
7-OH	-	12.35 (s)	C-6, C-7, C-8			

Table S1. ¹H (400 MHz) and ¹³C (100 MHz) spectroscopic data for friesodielsone A (1) in acetone- d_6 .

C-5", C-6"

5''-OH

-

12.73 (s)

Friesodielsone B (2) Position HMBC ($^{1}H \rightarrow ^{13}C$) $\delta_{\rm H}(J \text{ in Hz})$ $\delta_{\rm C}$ 2 C-1', C-2', C-6' 76.7 5.52 (dd, 3.0, 10.8) 3 C-2, C-4, C-10, C-1', C-6 37.9 2.25-2.30 (m) 4 26.5 4.70 (dd, 2.4, 5.6) C-2, C-9, C-10, C-6, C-7 159.1 5 -C-7, C-10 94.9 5.91 (s) 6 7 164.9 _ 8 106.0 -9 160.8 -10 105.9 -C-6, C-7, C-8 11 192.1 10.16 (s) 1′ 142.3 -2',6' 126.8 7.45-7.47 (m) C-2, C-1', C-3', C-5' 3',5' 129.4 7.38-7.42 (m) C-1', C-2', C-4', C-6' 4′ 128.6 7.32-7.34 (m) C-2', C-3', C-5', C-6' 2" 79.6 5.61 (dd, 3.0, 13.0) C-1'", C-2'", C-6'" 2.82 (dd, 3.0, 17.0) 3″ 43.6 C-2", C-4", C-1"" 3.16 (dd, 13.0, 17.0) C-2", C-4", C-1" 4″ 197.7 5'' 160.6 _ 6″ 111.8 -7'' 160.6 -8″ 159.1 -_ 9″ 164.5 -10'' 103.8 -C-8", C-9" 11" 8.32 2.09 (s) 1‴ 140.4 -2"",6"" 127.2 C-2", C-1", C-3", C-5" 7.60-7.61 (m) 3''',5''' 129.5 7.45-7.47 (m) C-1''', C-2''', C-4''', C-6''' 4′′′ 129.3 7.38-7.42 (m) C-2''', C-3''', C-5''', C-6''' 12.35 (s) C-6, C-7, C-8 7-OH _ 12.67 (s) C-5", C-6", C-10" 5''-OH -

Table S2. ¹H (400 MHz) and ¹³C (100 MHz) spectroscopic data for friesodielsone B (**2**) in acetone- d_6 .

Table 3. ¹ H (400 MHz) and ¹³ C (100 MHz) spectroscopic data for friesodielsone C (3) in	
acetone- d_6 .	

р. ·/·	Friesodielsone C (3)						
Position	$\delta_{\rm C}$	$\delta_{\rm H}(J \text{ in Hz})$	HMBC ($^{1}H \rightarrow ^{13}C$)				
2	76.7	5.53 (dd, 3.2, 10.7)	C-4, C-1', C-2', C-6'				
3	37.9	2.25-2.32 (m)	C-2, C-4, C-8				
4	26.1	4.67 (dd, 2.6, 5.5)	C-2, C-3, C-9, C-10, C-7, C-8, C-9				
5	162.8	-	-				
6	94.8	5.90 (s)	C-5, C-8				
7	165.2	-	-				
8	105.8	-	-				
9	164.7	-	-				
10	104.7	-	-				
11	192.1	10.15(s)	C-6, C-8, C-9				
1′	142.4	-	-				
2',6'	126.8	7.44-7.48 (m)	C-2, C-1', C-3', C-5'				
3',5'	129.4	7.39-7.42 (m)	C-1', C-2', C-4', C-6'				
4'	128.6	7.33-7.35 (m)	C-2', C-3', C-5', C-6'				
2''	79.9	5.59 (dd, 3.0,13.0)	C-4", C-1"", C-2"", C-6""				
3''	43.7	2.81 (dd, 3.0, 17.0)	C-2", C-4", C-1""				
		3.22 (dd, 13.0, 17.0)	C-2", C-4", C-1""				
4''	197.1	-	-				
5''	162.0	-	-				
6''	95.8	6.08 (s)	C-4", C-5", C-7", C-10"				
7''	162.8	-	-				
8''	111.8	-	-				
9''	160.6	-	-				
10''	103.5	-	-				
1′′′	140.1	-	-				
2′′′,6′′′	129.4	7.44-7.46 (m)	C-2", C-1"', C-3"', C-5"'				
3'''.5'''	129.4	7.57-7.58 (m)	C-1'''. C-2'''. C-4'''. C-6'''				
4'''	128.6	7.39-7.42 (m)	C-2''', C-3''', C-5''', C-6'''				
7-OH	-	12.35 (s)	C-6, C-7, C-8				
5″-OH	-	12.72 (s)	-				