$[2+2+2]$ cyclotrimerisation as a convenient route to $\mathbf{6 N}$-doped nanographenes: a synthetic introduction to hexaazasuperbenzenes
Lankani P. Wijesinghe, ${ }^{\text {a }}$ Sarath D. Perera, ${ }^{\text {a,b }}$ Eugene Larkin, ${ }^{\text {a }}$ Gearóid M. Ó Máille, ${ }^{a}$ Robert Conway-Kenny, ${ }^{a}$ Buddhie S. Lankage, ${ }^{\text {a }}$ Longsheng Wang, ${ }^{\text {a }}$ Sylvia M. Draper ${ }^{{ }^{*}}$
${ }^{\text {a }}$ School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
${ }^{\mathrm{b}}$ The Department of Chemistry, The Open University of Sri Lanka, Nugegoda, Sri Lanka.

Contents

Supporting information

S1. Materials and methods
General Methods
Electrochemical Measurements
Photophysical Measurements
Crystal structure determination
S2. Synthetic procedures including compound characterisation4

Cyclotrimerisation of (4-tert-butylphenyl)(5-pyrimidyl)acetylene 4
3,5,6-Tri-(4-tert-butylphenyl)-1,2,4-tri-(5-pyrimidyl)benzene (1) 5

2,4,6-Tri-(4-tert-butylphenyl)-1,3,5-tri-(5-pyrimidyl)benzene (2)

Procedure for oxidative cyclodehydrogenation
Method A: FeCl_{3} route
Method B: $\mathrm{AlCl}_{3} / \mathrm{CuCl}_{2}$
Method C: (i) DDQ/ $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ (ii) $\mathrm{DDQ} / \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ route. ${ }^{4}$

2/3-Asym-HASB (3) 7
5/6-Asym-HASB (4) 8
5/6-Sym-HASB (5) 11
3,5,6-Tri-(3,4,5-trimethoxyphenyl)-1,2,4-tri-(5-pyrimidyl)benzene (6) 12
2,4,6-tri-(3,4,5-Trimethoxyphenyl)-1,3,5-tri-(5-pyrimidyl)benzene (7) 13
$7,8,9,10,11,12,16,17,18$-Non-(methoxy)-1, 3, 4, 6, 13, 15 -hexaazasuperbenzene (8) 14
$4,5,6,10,11,12,16,17,18$-Non-(methoxy)-1, 3, 7, 9, 13, 15 -hexaazasuperbenzene (9) and 5/6-
Sym-HASB (9) 14
S3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 16
S4. Mass spectra of reaction mixtures 23
(a) Crude mass spectral analysis - cyclodehydrogenation of $\mathbf{1}$
(b) Crude mass spectral analysis - cyclodehydrogenation of 2
(c) Crude mass spectral analysis - cyclodehydrogenation of 6
(d) Crude mass spectral analysis - cyclodehydrogenation of 7
S5. X-ray crystal structures of 2 26
S6. UV-visible absorption and emission spectra 27
(a) Polyphenylenes
(b) Photophysical data for 6 N fused systems
S7: Electrochemical data for 6N fused systems 28
(a) Oxidation
(b) Reduction
References 28

Supporting information

S1. Materials and methods

General Methods: Unless otherwise stated, all reactions were carried out under nitrogen or argon with dry solvent, freshly distilled under anhydrous conditions. All chemicals were purchased from Sigma Aldrich unless otherwise stated.

NMR spectra were recorded in CDCl_{3} with (i) Bruker Avance DPX- 400 spectrometer (operating at 400.1 MHz for ${ }^{1} \mathrm{H}, 100.6 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$), (ii) Bruker AV-600 spectrometer (600.1 MHz for ${ }^{1} \mathrm{H}$, 150.6 MHz for ${ }^{13} \mathrm{C}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referenced relative to TMS ($\delta=0.00 \mathrm{ppm}$) ${ }^{13} \mathrm{C}$ NMR spectra were proton-decoupled. Chemical shifts (δ) are reported in ppm and coupling constants in Hz . IR spectra (reported in cm^{-1}) of neat samples were recorded with a PerkinElmer Spectrum-One FT-IR spectrometer equipped with a Universal-ATR sampling accessory. Electrospray mass spectra were recorded with a Micromass-LCT spectrometer, and accurate mass spectra were referenced against leucine enkephalin ($555.6 \mathrm{~g} \mathrm{~mol}^{-1}$) and reported to within 5 ppm. MALDI-TOF mass spectra were recorded with a Waters MALDI-QTOF Premier spectrometer by using an α-cyano-4-hydroxycinnamic acid matrix, and accurate mass spectra were referenced against [Glu1]-fibrinopeptide $\mathrm{B}\left(1570.6 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ and reported to within 5 ppm . Elemental analyses were performed in the Microanalytical Laboratory, University College Dublin.

Electrochemical Measurements: Cyclic voltammetry was performed by using a CH instruments Electrochemical Analyser Model 600B. Cyclic voltammograms were measured on 1 mM solutions of ligands in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by using tetra- n-butylammonium hexafluorophosphate ($\mathrm{TBAPF}_{6}, 0.1 \mathrm{M}$) as supporting electrolyte. A standard three-electrode cell was employed with a glassy carbon working electrode, a Pt wire counter electrode, and an SCE as the reference electrode. Potentials are quoted vs. the ferrocene/ferrocenium couple $(0.0 \mathrm{~V})$, and all potentials were referenced to internal ferrocene added at the end of each experiment. Solutions were degassed for several minutes by nitrogen bubbling before the experiments were performed, and a flow of nitrogen over the solution was maintained for the duration of the experiment.

Photophysical Measurements: UV/Vis absorption spectra were recorded as optically dilute solutions (10^{-5} to $10^{-6} \mathrm{M}$) in $1 \mathrm{x} 1 \mathrm{~cm}^{2}$ quartz cuvettes with a Shimadzu UV-2450
spectrophotometer. Corrected steady-state solution (ca. $10^{-6} \mathrm{M}$) spectra at 298 K were recorded with a Horiba-Jobin-Yvon Fluorolog 3-22 spectrometer with double grating emission and excitation monochromators. Low temperature measurements were carried out within a thin tube in a quartz Dewar filled with liquid nitrogen. A Jobin-Yvon FluoroHub single-photon counting controller fitted with a 340 nm Jobin-Yvon NanoLED was used to measure lifetimes, which were determined from the observed decays by using DataStation v2.4. Emission quantum yields of 4 was measured by the Demas and Crosby ${ }^{1}$ method relative to quinine sulfate in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ $(\Phi \mathrm{em}=0.546)^{2}$ as the reference. Corrections were made for the difference in refractive index of the sample and reference solutions.

Crystal structure determination:

Single crystal analyses were carried out on a Bruker SMART APEX CCD diffractometer using graphite monochromised $\operatorname{Mo}-\mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation at the temperatures given following data. Data reduction was performed using SAINT. Intensities were corrected for Lorentz and polarization effects and for absorption by SADABS. The structures were solved by direct methods using SHELXS and refined on F^{2} using all data by full-matrix least-squares procedures with SHELX-97. All non-hydrogen atoms were refined with anisotropic displacement parameters 1.3 times the isotropic equivalent of their carrier carbons.

S2. Synthetic procedures

Cyclotrimerisation of (4-tert-butylphenyl)(5-pyrimidyl)acetylene

(4-Tert-butylphenyl)(5-pyrimidyl)acetylene ${ }^{3}(150 \mathrm{mg}, 0.63 \mathrm{mmol})$ and dicobalt octacarbonyl $(43.3 \mathrm{mg}, 0.13 \mathrm{mmol})$ were heated at reflux temperature in dioxane $(7 \mathrm{~mL})$ for 24 h . The solvent was reduced in vacuo, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite to remove cobalt particles. The products were purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}, 25: 1\right)$. Both asymmetric $1\left(R_{f}=0.31\right)$ and symmetric $2\left(R_{f}=0.57\right)$ products were isolated as white crystalline solids, with respective yields of: $\mathbf{1}(102 \mathrm{mg}, 0.144 \mathrm{~mol}, 68 \%) ; 2(40.5 \mathrm{mg}, 0.057 \mathrm{mmol}, 27 \%)$.

3,5,6-Tri-(4-tert-butylphenyl)-1,2,4-tri-(5-pyrimidyl)benzene (1)

${ }^{\mathbf{1}} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ in ppm$): 8.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{1}{ }^{\prime}\right.$ and $\left.\mathrm{H}^{1 "}\right), 8.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 8.27(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{H}^{2^{\prime}}$ or $\left.\mathrm{H}^{2 "}\right), 8.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right.$ or $\left.\mathrm{H}^{2 "}\right), 8.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 7.04\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{H}^{3}\right), 6.95(\mathrm{~d}, 4 \mathrm{H}$, ${ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{H}^{3}$ and $\left.\mathrm{H}^{3}{ }^{\prime}\right), 6.77\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{H}^{4}\right), 6.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4}\right.$ and $\left.\mathrm{H}^{4}\right)$, $1.15(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.12\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 157.83 ($2 \mathrm{C}, \mathrm{C}^{2}$ or $\mathrm{C}^{2 "}$), $157.81\left(2 \mathrm{C}, \mathrm{C}^{2}\right.$ or $\mathrm{C}^{2 "}$), 157.5 $\left(2 \mathrm{C}, \mathrm{C}^{2}\right), 156.2\left(2 \mathrm{C}, \mathrm{C}^{1}{ }^{\prime}\right.$ and $\left.\mathrm{C}^{1}{ }^{1}\right), 155.6\left(1 \mathrm{C}, \mathrm{C}^{1}\right), 150.3\left(\mathrm{C}_{\text {quat }}\right), 149.6\left(\mathrm{C}_{\text {quat }}\right), 149.5\left(\mathrm{C}_{\text {quat }}\right), 143.5$ $\left(\mathrm{C}_{\text {quat }}\right), 142.6\left(\mathrm{C}_{\text {quat }}\right), 141.9\left(\mathrm{C}_{\text {quat }}\right), 135.2\left(\mathrm{C}_{\text {quat }}\right), 134.9\left(\mathrm{C}_{\text {quat }}\right), 134.8\left(\mathrm{C}_{\text {quat }}\right), 134.6\left(\mathrm{C}_{\text {quat }}\right), 134.2$ $\left(\mathrm{C}_{\text {quat }}\right), 134.0\left(\mathrm{C}_{\text {quat }}\right), 133.7\left(\mathrm{C}_{\text {quat }}\right), 133.6\left(\mathrm{C}_{\text {quat }}\right), 133.4\left(\mathrm{C}_{\text {quat }}\right), 130.6\left(2 \mathrm{C}, \mathrm{C}^{3}\right), 130.5\left(2 \mathrm{C}, \mathrm{C}^{3}\right.$ or $\mathrm{C}^{3 "}$), $130.4\left(2 \mathrm{C}, \mathrm{C}^{3}\right.$ or $\left.\mathrm{C}^{3 "}\right), 125.1\left(2 \mathrm{C}, \mathrm{C}^{4}\right), 124.4\left(2 \mathrm{C}, \mathrm{C}^{4}\right.$ or $\left.\mathrm{C}^{4 "}\right), 124.3\left(2 \mathrm{C}, \mathrm{C}^{4}\right.$ or C^{4} "), 34.2 $\left(3 \mathrm{C},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.0\left(9 \mathrm{C},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
HRMS (ESI-MS, CHCl_{3}): calculated for $\mathrm{C}_{48} \mathrm{H}_{49} \mathrm{~N}_{6},[\mathrm{M}+\mathrm{H}]^{+} m / z$, 709.4019; found 709.3990.
M.p $>360^{\circ} \mathrm{C}$.

IR (neat) vbar in $\mathrm{cm}^{-1}: 3047\left(\mathrm{CH}_{\text {aromatic }}\right), 2868,1578,1548(\mathrm{C}=\mathrm{N}), 1418(\mathrm{C}=\mathrm{C}), 1388\left(\mathrm{CH}_{3}\right)$, 1269, 1174, 1019, 837, 786, 732.

CHN: Calculated (\%) for $\mathrm{C}_{48} \mathrm{H}_{49} \mathrm{~N}_{6}$: C, 82.32; H, 6.82, N, 11.85. Found: C, 81.10; H, 6.68, N, 11.94. UV-vis $\left(\mathrm{CHCl}_{3}, \mathrm{~nm}\right): 270\left(\lambda_{\text {max }}{ }^{\text {abs }}\right)$.

Fluorescence $\left(\mathrm{CHCl}_{3}, \mathrm{~nm}, \lambda_{\mathrm{exc}}=300 \mathrm{~nm}, \mathrm{RT}\right): 357\left(\lambda_{\max }{ }^{\mathrm{em}}\right)$.

2,4,6-Tri-(4-tert-butylphenyl)-1,3,5-tri-(5-pyrimidyl)benzene (2)

${ }^{\mathbf{1}} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ in ppm): $8.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{1}\right), 8.22\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}^{2}\right), 7.04\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.8.5 \mathrm{~Hz}, \mathrm{H}^{3}\right), 6.77\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, \mathrm{H}^{4}\right), 1.14\left(\mathrm{~s}, 27 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13}$ C-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 157.5 ($6 \mathrm{C}, \mathrm{C}^{2}$), 155.7 ($3 \mathrm{C}, \mathrm{C}^{1}$), $150.3\left(\mathrm{C}_{\text {quat }}\right), 142.9$ $\left(\mathrm{C}_{\text {quat }}\right), 134.4\left(\mathrm{C}_{\text {quat }}\right), 134.3\left(\mathrm{C}_{\text {quat }}\right), 133.8\left(\mathrm{C}_{\text {quat }}\right), 130.5\left(6 \mathrm{C}, \mathrm{C}^{4}\right), 125.1\left(6 \mathrm{C}, \mathrm{C}^{3}\right), 34.3(3 \mathrm{C},-$ $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $31.0\left(9 \mathrm{C},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
HRMS (ESI-MS, CHCl_{3}): calculated for $\mathrm{C}_{48} \mathrm{H}_{49} \mathrm{~N}_{6},[\mathrm{M}+\mathrm{H}]^{+} m / z, 709.4019$; found 709.3983.
M. $\mathbf{p}>360^{\circ} \mathrm{C}$.

IR (neat) vbar in $\mathrm{cm}^{-1}: 3038\left(\mathrm{CH}_{\text {aromatic }}\right)$, 2904, 2868, 1576, $1548(\mathrm{C}=\mathrm{N}), 1508,1464,1390$ $\left(\mathrm{CH}_{3}\right), 1185,833,783$.
CHN: Calculated (\%) for $\mathrm{C}_{48} \mathrm{H}_{49} \mathrm{~N}_{6}$: C, 82.32; H, 6.82, N, 11.85. Found: C, 81.09; H, 6.88, N, 12.03.

UV-vis $\left(\mathrm{CHCl}_{3}, \mathrm{~nm}\right): 270\left(\lambda_{\max }{ }^{\text {abs }}\right)$.
Fluorescence $\left(\mathrm{CHCl}_{3}, \mathrm{~nm}, \lambda_{\text {exc }}=300 \mathrm{~nm}, \mathrm{RT}\right): 369\left(\lambda_{\max }{ }^{\mathrm{em}}\right)$.

Procedure for oxidative cyclodehydrogenation

Oxidative cyclodehydrogenation of $\mathbf{1}$ was carried out via three methods; Method $\mathbf{A}-\mathrm{FeCl}_{3}$ route and Method $\mathbf{B}-\mathrm{AlCl}_{3} / \mathrm{CuCl}_{2}$ route and Method \mathbf{C} - (i) $\mathrm{DDQ} / \mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ route and also by (ii) $\mathrm{DDQ} / \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ route. ${ }^{4}$

Method A

A solution of iron(III) trichloride ($602 \mathrm{mg}, 3.70 \mathrm{mmol}$), in nitromethane (3 mL) was added dropwise to a stirred solution of $\mathbf{1}(100 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. After stirring for 72 h under argon at room temperature, the reaction was quenched with $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$ and was left stirring for another 30 min . The solvent was reduced in vacuo, and was redissolved in CHCl_{3}. The organic solution was washed with saturated $\mathrm{NaHCO}_{3}(1 \times 25 \mathrm{~mL})$, water $(2 \times 25 \mathrm{~mL})$ and finally dried over MgSO_{4}. Preparative thin layer chromatography $\left(\mathrm{SiO}_{2}, \mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{CH}_{3} \mathrm{OH}\right.$, 25:1,) was used to isolate the products. Two main bands were observed: an orange band closer to the baseline and a yellow band above it. $5 / 6$-Asym-HASB (4) (five C-C bonds fused) was isolated as an orange solid in 20% yield ($20 \mathrm{mg}, 0.03 \mathrm{mmol}$) and ${ }^{2 / 3}$-asym-HASB (3) (four C-C bonds fused) as a dark yellow solid in 10% yield ($10 \mathrm{mg}, 0.014 \mathrm{mmol}$).

2/3-Asym-HASB (3)

${ }^{1} \mathbf{H}-$ NMR ($600 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta$ in ppm): $10.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{13}\right), 9.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{12}\right.$ and $\left.\mathrm{H}^{1}\right), 9.81$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 9.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{8}\right), 9.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 9.53\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 9.49\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 9.31(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}^{11}\right), 8.58\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, \mathrm{H}^{5}\right), 8.41\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, \mathrm{H}^{9}\right), 7.71\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.4\right.$ $\left.\mathrm{Hz}, \mathrm{H}^{10}\right), 7.61\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, \mathrm{H}^{4}\right), 1.78\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.62\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.60(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathbf{C}$-NMR ($150 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta$ in ppm): 157.67 ($1 \mathrm{C}, \mathrm{C}$), $156.88(1 \mathrm{C}, \mathrm{C}), 156.63$ (1 C , $\left.\mathrm{C}^{1}\right), 156.22\left(1 \mathrm{C}, \mathrm{C}^{1}\right), 155.79\left(1 \mathrm{C}, \mathrm{C}^{1}\right), 154.03\left(\mathrm{C}_{\text {quat }}\right), 153.32\left(\mathrm{C}_{\text {quat }}\right), 152.22\left(\mathrm{C}_{\text {quat }}\right), 152.07$ $\left(\mathrm{C}_{\text {quat }}\right), 151.98\left(\mathrm{C}_{\text {quat }}\right), 151.55\left(\mathrm{C}_{\text {quat }}\right), 151.08\left(\mathrm{C}_{\text {quat }}\right), 134.30\left(\mathrm{C}_{\text {quat }}\right), 131.77\left(\mathrm{C}_{\text {quat }}\right), 130.46\left(\mathrm{C}_{\text {quat }}\right)$, $130.43\left(\mathrm{C}_{\text {quat }}\right), 129.94\left(\mathrm{C}_{\text {quat }}\right), 129.83\left(\mathrm{C}_{\text {quat }}\right), 129.60\left(\mathrm{C}_{\text {quat }}\right), 129.19\left(\mathrm{C}_{\text {quat }}\right), 128.88\left(\mathrm{C}_{\text {quat }}\right), 128.85$
$\left(\mathrm{C}_{\text {quat }}\right), 128.40\left(\mathrm{C}_{\text {quat }}\right), 128.07\left(\mathrm{C}_{\text {quat }}\right), 128.03,127.46,127.23,127.18,126.08(1 \mathrm{C}, \mathrm{C}), 125.46$ $(1 \mathrm{C}, \mathrm{C}), 125.15\left(\mathrm{C}_{\text {quat }}\right), 124.29\left(\mathrm{C}_{\text {quat }}\right), 123.67\left(\mathrm{C}_{\text {quat }}\right), 122.97\left(\mathrm{C}_{\text {quat }}\right), 122.60\left(\mathrm{C}_{\text {quat }}\right), 121.62$ $\left(\mathrm{C}_{\text {quat }}\right), 121.52\left(\mathrm{C}_{\text {quat }}\right), 121.39(1 \mathrm{C}, \mathrm{C}), 121.17(1 \mathrm{C}, \mathrm{C}), 120.17\left(\mathrm{C}_{\text {quat }}\right), 115.21\left(\mathrm{C}_{\text {quat }}\right), 35.89(1 \mathrm{C},-$ $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.28\left(1 \mathrm{C},-C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.24\left(1 \mathrm{C},-C\left(\mathrm{CH}_{3}\right)_{3}\right), 31.62\left(3 \mathrm{C},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.29(3 \mathrm{C}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.21\left(3 \mathrm{C},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

HRMS (ESI-MS, $\mathrm{C}_{7} \mathrm{H}_{8}$) calculated for $\mathrm{C}_{48} \mathrm{H}_{41} \mathrm{~N}_{6},[\mathrm{M}+\mathrm{H}]^{+} m / z 701.3393$; found 701.3390.
UV-vis ($\mathrm{C}_{7} \mathrm{H}_{8}, \mathrm{~nm}$): 323 ($\left.\lambda_{\text {max }}{ }^{\text {abs }}\right)$, 352, 385, 440, 468.
Fluorescence $\left(\mathrm{C}_{7} \mathrm{H}_{8}, \mathrm{~nm}, \lambda_{\text {exc }}=360 \mathrm{~nm}, \mathrm{RT}\right): 495\left(\lambda_{\max }{ }^{\mathrm{em}}\right)$.

5/6-Asym-HASB (4)

${ }^{1} \mathbf{H}-$ NMR $\left(600 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right.$ in ppm): $10.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 10.09\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 10.05(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}^{5}\right), 10.03\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 9.98\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 9.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{11}\right), 9.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{8}\right), 8.72\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{9}\right), 8.68\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{8}\right), 7.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right.$ and $\left.\mathrm{H}^{10}\right), 1.87(\mathrm{~s}, 9 \mathrm{H},-$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) 1.67\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.65\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta$ in ppm): $157.09\left(1 \mathrm{C}, \mathrm{C}^{1}\right), 157.01\left(1 \mathrm{C}, \mathrm{C}^{2}\right), 156.04(1 \mathrm{C}$, $\left.\mathrm{C}^{5}\right), 154.32\left(\mathrm{C}_{\text {quat }}\right), 154.14\left(\mathrm{C}_{\text {quat }}\right), 153.50\left(\mathrm{C}_{\text {quat }}\right), 153.38\left(\mathrm{C}_{\text {quat }}\right), 152.50\left(\mathrm{C}_{\text {quat }}\right), 152.37\left(\mathrm{C}_{\text {quat }}\right)$, $151.24\left(\mathrm{C}_{\text {quat }}\right), 151.03\left(\mathrm{C}_{\text {quat }}\right), 131.19\left(\mathrm{C}_{\text {quat }}\right), 130.83\left(1 \mathrm{C}, \mathrm{C}^{10}\right), 130.76\left(1 \mathrm{C}, \mathrm{C}^{7}\right), 129.54\left(\mathrm{C}_{\text {quat }}\right)$, $128.16\left(\mathrm{C}_{\text {quat }}\right), 127.31\left(1 \mathrm{C}, \mathrm{C}^{8}\right), 127.05\left(1 \mathrm{C}, \mathrm{C}^{9}\right), 126.90\left(1 \mathrm{C}, \mathrm{C}^{3}\right), 126.88\left(\mathrm{C}_{\text {quat }}\right), 126.71\left(\mathrm{C}_{\text {quat }}\right)$, $126.33\left(1 \mathrm{C}, \mathrm{C}^{4}\right), 124.34\left(\mathrm{C}_{\text {quat }}\right), 121.96\left(1 \mathrm{C}, \mathrm{C}^{11}\right), 121.76\left(1 \mathrm{C}, \mathrm{C}^{6}\right), 121.35\left(\mathrm{C}_{\text {quat }}\right), 121.29\left(\mathrm{C}_{\text {quat }}\right)$, $119.66\left(\mathrm{C}_{\text {quat }}\right), 119.11\left(\mathrm{C}_{\text {quat }}\right), 118.14\left(\mathrm{C}_{\text {quat }}\right), 118.07\left(\mathrm{C}_{\text {quat }}\right), 117.16\left(\mathrm{C}_{\text {quat }}\right), 114.87\left(\mathrm{C}_{\text {quat }}\right), 36.11$ $\left(1 \mathrm{C},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.40\left(1 \mathrm{C},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.35\left(1 \mathrm{C},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.7\left(3 \mathrm{C},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.33(3 \mathrm{C},-$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.27\left(3 \mathrm{C},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

HRMS (ESI-MS, $\mathrm{C}_{7} \mathrm{H}_{8}$): calculated for $\mathrm{C}_{48} \mathrm{H}_{38} \mathrm{~N}_{6},[\mathrm{M}+\mathrm{Na}]^{+} m / z$, 721.3056; found 721.3060.
M.p $>360^{\circ} \mathrm{C}$.

IR (neat) vbar in $\mathrm{cm}^{-1}: 2958(\mathrm{C}-\mathrm{H}), 1603,1560,1528,1465,1395,1367,1296,1252,1121,910$, 887, 845, 792.

UV-vis ($\mathrm{C}_{7} \mathrm{H}_{8}, \mathrm{~nm}$): 323 ($\left.\lambda_{\max }{ }^{\text {abs }}\right)$, 352, 385, 440, 468.
Fluorescence $\left(\mathrm{C}_{7} \mathrm{H}_{8}, \mathrm{~nm}, \lambda_{\text {exc }}=360 \mathrm{~nm}, \mathrm{RT}\right): 495\left(\lambda_{\max }{ }^{\mathrm{em}}\right)$.

Method B

A solution mixture of $1(50 \mathrm{mg}, 0.07 \mathrm{mmol}), \mathrm{AlCl}_{3}(140 \mathrm{mg}, 1.05 \mathrm{mmol})$, and $\mathrm{CuCl}_{2}(141 \mathrm{mg}$, $1.05 \mathrm{mmol})$ in $\mathrm{CS}_{2}(15 \mathrm{~mL})$ was stirred for 72 h at room temperature. The resulting black solid was allowed to settle and CS_{2} was removed. The black solid was suspended in an aqueous 10% ammonia solution (35 mL), extracted into chloroform and washed with water and the organic layer was dried over MgSO_{4}. The preliminary mass spectral results showed a mixture of products including $1 / 3^{\text {rd }}$ fused (two C-C bonds), $1 / 2$ fused (three C-C bonds), $2 / 3^{\text {rd }}$ fused (four $\mathrm{C}-\mathrm{C}$ bonds) and $5 /{ }^{\text {th }}$ fused (five C-C bonds) products. Purification was carried out using preparative thin-layer chromatography $\left(\mathrm{SiO}_{2}, \mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{CH}_{3} \mathrm{OH}, 25: 1\right)$. The preparative plate showed a myriad of bands and only $5 / 6$-Asym-HASB (4) was successfully isolated as an orange solid in low yield (5 mg , $0.007 \mathrm{mmol}, 5 \%)$.

The analyses of the products $5 / 6$-Asym-HASB (4), was consistent with the results obtained by

Method A.

Method C

(i) $\mathrm{DDQ} / \mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$

Compound 1 ($50 \mathrm{mg}, 0.071 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and methanesulfonic acid $(1.0 \mathrm{~mL})$ was added. The reaction mixture rapidly changed colour to a yellow upon addition of acid and the mixture was cooled at $0{ }^{\circ} \mathrm{C}$ for 15 min . DDQ (6 eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL) and was added dropwise to the reaction mixture. The reaction mixture gradually changed to a dark green coloration (after 2 hrs), and was stirred at $0^{\circ} \mathrm{C}$ for 5 h and left stirring at room temperature under argon for 48 h . After completion of the reaction, it was quenched with addition of saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic layer was separated and
washed with brine solution and water, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The removal of solvent in vacuo afforded a yellow precipitate. Thin layer preparative plate $\left(\mathrm{SiO}_{2}, \mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{CH}_{3} \mathrm{OH}, 20: 1\right)$ separation, resulted in the isolation of the $5 / 6^{\text {th }}$-Asym-HASB (4) as a yellow solid. In addition, the $5 / 6^{\text {th }}$ product was isolated by precipitating it from the mother liquor, giving an overall yield of 60%, ($30 \mathrm{mg}, 0.042 \mathrm{mmol}$).

(ii) $\mathrm{DDQ} / \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$

Compound $1(14 \mathrm{mg}, 0.020 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under an atmosphere of nitrogen, and DDQ ($27 \mathrm{mg}, 0.118 \mathrm{mmol}$) was added. Trifluoromethanesulfonic acid (0.01 mL , 0.118 mmol) was subsequently added, upon the addition of which a dark red colour was immediately observed. The reaction mixture slowly changed colour to a dark green over two hours. After completion of the reaction, it was quenched by the addition of a saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The organic layer was separated and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. The resulting solution was reduced in vacuo and upon addition of methanol, the product was precipitated as a yellow/orange solid, in a yield of 58% ($8 \mathrm{mg}, 0.012 \mathrm{mmol}$). NMR and HRMS confirmed the presence of a single species, the $5 / 6^{\text {th }}$-Asym-HASB (4), consistent with the product yielded from (i).

The analysis of the product obtained by Method C ((i) and (ii)), $5 / 6$-Asym-HASB (4), was consistent with the results obtained by Method A.

Cyclodehydrogenation of 2

Oxidative cyclodehydrogenation of $\mathbf{2}$ was carried out via three methods; Method $\mathbf{A}-\mathrm{FeCl}_{3}$ route and Method B- $\mathrm{AlCl}_{3} / \mathrm{CuCl}_{2}$ route and Method $\mathbf{C}-\mathrm{DDQ} / \mathrm{H}^{+}$route .

Method A discussed above for 1 was followed using a solution of iron(III) trichloride (602 mg , $3.70 \mathrm{mmol})$, in nitromethane (3 mL) which was added dropwise to a stirred solution of 2 (100 $\mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. A similar work up was followed and preparative thin layer chromatography $\left(\mathrm{SiO}_{2}, \mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{CH}_{3} \mathrm{OH}, 10: 0.4\right)$ resulted in successful isolation of $5 / 6$ - Sym - HASB (5) as a yellow solid in 23% yield. ($23 \mathrm{mg}, 0.03 \mathrm{mmol}$).

5/6-Sym-HASB (5)

${ }^{\mathbf{1}} \mathrm{H}$-NMR ($600 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta$ in ppm): $10.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{1}\right.$ and H^{4}), $10.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{2}\right.$ and $\left.\mathrm{H}^{3}\right), 10.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{9}\right), 9.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 9.66\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{10}\right.$ or $\left.\mathrm{H}^{11}\right), 8.98\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{7}\right)$, $8.85\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{8}\right), 7.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and H^{10} or $\left.\mathrm{H}^{11}\right) 1.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.67\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.64\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
HRMS (ESI-MS, $\mathrm{C}_{7} \mathrm{H}_{8}$): calculated for $\mathrm{C}_{48} \mathrm{H}_{38} \mathrm{~N}_{6},[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$, 699.3236; found 699.3236.
UV-vis $\left(\mathrm{C}_{7} \mathrm{H}_{8}, \mathrm{~nm}\right): 323$ ($\left.\lambda_{\text {max }}{ }^{\text {abs }}\right), 352,385,440,468$.
Fluorescence $\left(\mathrm{C}_{7} \mathrm{H}_{8}, \mathrm{~nm}, \lambda_{\text {exc }}=360 \mathrm{~nm}, \mathrm{RT}\right): 495\left(\lambda_{\max }{ }^{\mathrm{em}}\right)$.

Method B and Method C were also attempted for 2, however these were unsuccessful.

Cyclotrimerisation of (3,4,5-trimethoxyphenyl)(5-pyrimidyl)acetylene

(3,4,5-Trimethoxyphenyl)(5-pyrimidyl)acetylene ${ }^{5}(150 \mathrm{mg}, \quad 0.55 \mathrm{mmol})$ and dicobalt octacarbonyl ($43.3 \mathrm{mg}, 0.13 \mathrm{mmol}$) were heated at reflux temperature in dioxane (7 mL) for 24 h. The solvent was reduced in vacuo, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite to remove cobalt particles. The products were purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\mathrm{CH}_{3} \mathrm{OH}$, 25:1). Both asymmetric $6\left(\mathrm{R}_{\mathrm{f}}=0.24\right)$ and symmetric $7\left(\mathrm{R}_{\mathrm{f}}=0.33\right)$ products were isolated as white crystalline solids with respective yields of: 6 ($95 \mathrm{mg}, 0.12 \mathrm{mmol}, 63 \%$); 7 ($25 \mathrm{mg}, 0.03$ mmol, 17 \%).

3,5,6-Tri-(3,4,5-trimethoxyphenyl)-1,2,4-tri-(5-pyrimidyl)benzene (6)

${ }^{1} \mathbf{H}-$ NMR ($600 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta$ in ppm): $8.84\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 1^{\prime} / \mathrm{H}^{\prime}\right), 8.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 1^{\prime} / \mathrm{H}^{\prime}\right), 8.81$ (s, 1H, H1), 8.28 (m, 6H, H2, H2' and H2"), 3.66, 3.49, 3.48, 3.46, 3.43 ($-\mathrm{OCH}_{3}$).
${ }^{13} \mathbf{C}$-NMR ($150 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta$ in ppm): 157.36 ($1 \mathrm{C}, \mathrm{C}^{2}$ or $\mathrm{C}^{2 "}$), 157.26 ($1 \mathrm{C}, \mathrm{C}^{2^{\prime}}$ or $\mathrm{C}^{2 "}$), $156.75\left(1 \mathrm{C}, \mathrm{C}^{2}\right.$ or $\left.\mathrm{C}^{2 \prime \prime}\right), 156.68\left(1 \mathrm{C}, \mathrm{C}^{2}\right.$ or $\left.\mathrm{C}^{2 \prime}\right), 156.47\left(2 \mathrm{C}, \mathrm{C}^{2}\right), 156.41\left(1 \mathrm{C}, \mathrm{C}^{1}\right), 156.06(1 \mathrm{C}$, C^{1} or C^{1} "), $156.01\left(1 \mathrm{C}, \mathrm{C}^{1}\right.$ 'or $\left.\mathrm{C}^{1^{\prime}}\right), 152.83\left(\mathrm{C}_{\text {quat }}\right), 152.79\left(\mathrm{C}_{\text {quat }}\right), 152.58\left(\mathrm{C}_{\text {quat }}\right), 152.55\left(\mathrm{C}_{\text {quat }}\right)$, $142.72\left(\mathrm{C}_{\text {quat }}\right), 142.63\left(\mathrm{C}_{\text {quat }}\right), 141.83\left(\mathrm{C}_{\text {quat }}\right), 137.27\left(\mathrm{C}_{\text {quat }}\right), 137.24\left(\mathrm{C}_{\text {quat }}\right), 137.05\left(\mathrm{C}_{\text {quat }}\right)$, $135.01\left(\mathrm{C}_{\text {quat }}\right), 134.67\left(\mathrm{C}_{\text {quat }}\right), 134.01\left(\mathrm{C}_{\text {quat }}\right), 133.94\left(\mathrm{C}_{\text {quat }}\right), 133.79\left(\mathrm{C}_{\text {quat }}\right), 133.67\left(\mathrm{C}_{\text {quat }}\right), 133.23$ $\left(\mathrm{C}_{\text {quat }}\right), 132.98\left(\mathrm{C}_{\text {quat }}\right), 132.94\left(\mathrm{C}_{\text {quat }}\right), 132.77\left(\mathrm{C}_{\text {quat }}\right), 132.09\left(\mathrm{C}_{\text {quat }}\right), 131.90\left(\mathrm{C}_{\text {quat }}\right), 108.72(2 \mathrm{C}$, $\left.\mathrm{C}^{3}\right), 108.64\left(2 \mathrm{C}, \mathrm{C}^{3}\right), 108.61\left(2 \mathrm{C}, \mathrm{C}^{3}\right), 60.73\left(3 \mathrm{C},-\mathrm{OCH}_{3}\right), 55.95\left(6 \mathrm{C},-\mathrm{OCH}_{3}\right)$.
HRMS (MALDI-TOF, CHCl_{3}): calculated for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{9}$, $[\mathrm{M}+\mathrm{H}]^{+} m / z, 810.3013$; found 810.2988.
M.p. $243-245^{\circ} \mathrm{C}$.

IR (neat) vbar in $\mathrm{cm}^{-1}: 2960(\mathrm{C}-\mathrm{H}), 1580,1452,1411,1294,1321,1238,1118$ (C-OR), 1000, 972, 830, 767.

UV-vis $\left(\mathrm{CHCl}_{3}, \mathrm{~nm}\right): 270\left(\lambda_{\text {max }}{ }^{\text {abs }}\right)$.
Fluorescence $\left(\mathrm{CHCl}_{3}, \mathrm{~nm}, \lambda_{\text {exc }}=300 \mathrm{~nm}, \mathrm{RT}\right): 357\left(\lambda_{\text {max }}{ }^{\mathrm{em}}\right)$.

2,4,6-tri-(3,4,5-Trimethoxyphenyl)-1,3,5-tri-(5-pyrimidyl)benzene (7)

${ }^{\mathbf{1}} \mathbf{H}-$ NMR $\left(600 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right.$ in ppm): $8.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{1}\right), 8.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}^{2}\right), 6.04(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{H}^{3}\right), 3.72\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}^{5} \mathrm{OCH}_{3}\right), 3.54\left(\mathrm{~s}, 18 \mathrm{H},-\mathrm{C}^{4} \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathbf{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ in ppm$): 156.74\left(6 \mathrm{C}, \mathrm{C}^{2}\right), 156.04\left(3 \mathrm{C}, \mathrm{C}^{1}\right), 152.86\left(\mathrm{C}_{\text {quat }}\right), 142.73$ $\left(\mathrm{C}_{\text {quat }}\right), 137.34\left(\mathrm{C}_{\text {quat }}\right), 132.04\left(\mathrm{C}_{\text {quat }}\right), 108.69\left(6 \mathrm{C}, \mathrm{C}^{3}\right), 60.80\left(6 \mathrm{C}-\mathrm{C}^{5} \mathrm{OCH}_{3}\right), 56.07(3 \mathrm{C},-$ $\mathrm{C}^{4} \mathrm{OCH}_{3}$).
HRMS (MALDI-TOF, CHCl_{3}): calculated for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{9}$, $[\mathrm{M}+\mathrm{H}]^{+} m / z$, 810.3013; found 810.2986.
M.p 240-242 ${ }^{\circ} \mathrm{C}$.

IR (neat) vbar in $\mathrm{cm}^{-1}: 2961$ (C-H), 1579, 1452, 1411, 1294, 1321, 1238, 1118 (C-OR), 1000, 972, 830, 767.

UV-vis $\left(\mathrm{CHCl}_{3}, \mathrm{~nm}\right): 270\left(\lambda_{\text {max }}{ }^{\text {abs }}\right)$.
Fluorescence $\left(\mathrm{CHCl}_{3}, \mathrm{~nm}, \lambda_{\text {exc }}=300 \mathrm{~nm}, \mathrm{RT}\right): 357\left(\lambda_{\text {max }}{ }^{\mathrm{em}}\right)$.

Cyclodehydrogenation of 6

Method A, discussed above for compound 1, was followed using a solution of iron(III) trichloride ($602 \mathrm{mg}, 3.70 \mathrm{mmol}$), in nitromethane (3 mL), which was added dropwise to a stirred solution of $6(100 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. After 24 hrs the reaction was quenched with $\mathrm{CH}_{3} \mathrm{OH}$ and was stirred for 30 min . The solvent was removed in vacuo, and yielded a brownish red solid. Preliminary mass spectral analysis of the crude material indicated the presence of a mixture of products, showing mainly the presence of the fully-fused product (six C-C bonds closed) $\mathbf{8}$ as the predominant product, along with a $5 / 6{ }^{\text {th }}$-fused product (five $\mathrm{C}-\mathrm{C}$
bonds closed). Thin layer preparative plate $\left(\mathrm{SiO}_{2}, \mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{CH}_{3} \mathrm{OH}, 20: 1\right)$ resulted in isolation of the fully fused $\mathbf{8}$ in 10% yield. ($10 \mathrm{mg}, 0.012 \mathrm{mmol}$).

$7,8,9,10,11,12,16,17,18$-Non-(methoxy)-1, 3, 4, 6, 13, 15 -hexaazasuperbenzene (8)

${ }^{\mathbf{1}} \mathrm{H}-$ NMR ($600 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta$ in ppm): $10.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 1$ or H 2$), 10.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 1$ or $\mathrm{H} 2), 10.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3), 4.56-4.20\left(27 \mathrm{H},-\mathrm{OCH}_{3}\right)$.

HRMS (ESI-MS, CHCl_{3}): calculated for $\mathrm{C}_{45} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{9},[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ 799.2147; found 799.2144.
UV-vis $\left(\mathrm{C}_{7} \mathrm{H}_{8}, \mathrm{~nm}\right): 325,365\left(\lambda_{\max }{ }^{\text {abs }}\right)$, $386,462,492$.
Fluorescence $\left(\mathrm{C}_{7} \mathrm{H}_{8}, \mathrm{~nm}, \lambda_{\text {exc }}=360 \mathrm{~nm}, \mathrm{RT}\right): 514\left(\lambda_{\max }{ }^{\mathrm{em}}\right)$.
(Due to low yield, it was not possible to obtain a ${ }^{13} \mathrm{C}$ NMR of $\mathbf{8}$.)

Cyclodehydrogenation of 7

Method A discussed above for compound 1 was followed using a solution of iron(III) trichloride ($602 \mathrm{mg}, 3.70 \mathrm{mmol}$) in nitromethane (3 mL) which was added dropwise to a stirred solution of $7(100 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. A similar work-up was carried out as discussed in Method A for 1. The preliminary mass spectral analysis of the crude product resulted in both the fully-fused 9 and $5 / 6$ th-fused 10. However, despite several attempts using thin layer preparative plate in various solvent systems $\left.\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}, 10: 0.1\right) / \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}, 10: 0.2\right) /$ $\left(\mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{CH}_{3} \mathrm{OH}, 20: 1\right)$ the two products could not be separated.
$4,5,6,10,11,12,16,17,18-N o n-(m e t h o x y)-1,3,7,9,13,15$-hexaazasuperbenzene (9) and 5/6-Sym-HASB (9)

HRMS (ESI-MS, CHCl_{3}): calculated for $\mathrm{C}_{45} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{9},[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$, 799.2153; found 799.2134 (9).

HRMS (ESI-MS, CHCl_{3}): calculated for $\mathrm{C}_{45} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{9},[\mathrm{M}+\mathrm{H}]^{+} m / z$, 801.2309; found 801.2332 5/6-Sym-HASB (9).

S3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

1 in CDCl_{3}
${ }^{1} \mathrm{H}$-NMR

2 in CDCl_{3}
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}$-NMR

3 in CDCl_{3}
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}$-NMR

4 in CDCl_{3}
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}$-NMR

5 in CDCl_{3}
${ }^{1} \mathrm{H}-\mathrm{NMR}$

6 in CDCl_{3}
${ }^{1} \mathrm{H}-\mathrm{NMR}$

6 in CDCl_{3}
${ }^{13} \mathrm{C}-\mathrm{NMR}$

$7 \mathrm{in} \mathrm{CDCl}_{3}$
${ }^{1} \mathrm{H}-\mathrm{NMR}$

7 in CDCl_{3}
${ }^{13} \mathrm{C}$-NMR

8 in CDCl_{3}

S4. Mass spectra of reaction mixtures
(a) Crude mass spectral analysis - cyclodehydrogenation of $\mathbf{1}$

(b) Crude mass spectral analysis - cyclodehydrogenation of 2

(c) Crude mass spectral analysis - cyclodehydrogenation of 6

(d) Crude mass spectral analysis - cyclodehydrogenation of 7

S5. X-ray crystal structures of 2

Identification code
2

Empirical formula
C48 H48 N6

Formula weight
708.92

Temperature
150(2) K
Wavelength
$0.71073 \AA$

Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=6.1779(12) \AA$ A $\quad \alpha=77.28(3)^{\circ}$.
	$b=18.260(4) \AA$ 風 $\quad \beta=84.37(3)^{\circ}$.
	$\mathrm{c}=18.962(4) \AA\left(\begin{array}{l}\text { A }\end{array}\right.$
Volume	2057.8(7) \AA^{3}
Z	2
Density (calculated)	$1.144 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.068 \mathrm{~mm}^{-1}$
F(000)	756
Crystal size	$0.60 \times 0.20 \times 0.08 \mathrm{~mm}^{3}$
Theta range for data collection	1.75 to 25.14°.
Index ranges	$-7<=\mathrm{h}<=7,-21<=\mathrm{k}<=21,-22<=\mathrm{l}<=22$
Reflections collected	22203
Independent reflections	$7321[\mathrm{R}$ (int) $=0.0542]$
Completeness to theta $=25.14^{\circ}$	99.3 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9946 and 0.9603
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7321 / 0 / 487
Goodness-of-fit on F^{2}	1.005
Final R indices [$1>2$ sigma(I)]	$\mathrm{R} 1=0.0504, \mathrm{wR} 2=0.1182$
R indices (all data)	$\mathrm{R} 1=0.0890, w R 2=0.1346$
Largest diff. peak and hole	0.669 and -0.234 e. \AA^{-3}

S6. UV-visible absorption and emission spectra

S6a: Polyphenylenes

Figure 1: The (a) absorption and (b) emission spectra of 6 N polyphenylenes in chloroform ($\sim 10^{-6}$ M) at $R T$

Table 1: The absorption and emission data observed for $6 N$ polyphenylenes 1, 2, 6 and 7 in chloroform $\left(\sim 10^{-5} \mathrm{M}\right)$.

Compound	$\lambda_{\max }[\mathbf{n m}]\left(\boldsymbol{\varepsilon} \times \mathbf{1 0}^{\mathbf{4}}\left[\mathbf{M}^{\mathbf{- 1}} \mathbf{c m}^{\mathbf{- 1}}\right]\right)$	$\boldsymbol{\lambda}_{\text {em }}[\mathbf{n m}]\left(\lambda_{\text {exc }}[\mathbf{n m}]\right)$
$\mathbf{1}$	$270(2.6)$	$357(300)$
$\mathbf{2}$	$270(2.4)$	$369(300)$
$\mathbf{6}$	$297(3.3)$	$415(300)$
$\mathbf{7}$	$297(3.4)$	$426(300)$

S6b: Photophysical data for 6N fused systems

Figure 2: The overlaid absorption and emission spectra of 8 in toluene with $\lambda_{\text {exc }}=360 \mathrm{~nm}$

$$
\left(\sim 10^{-6} M\right) .
$$

S7: Electrochemical data for 6N fused systems

Figure 3: Cyclic voltammograms of 3, 4 and 5 showing (a) oxidation and (b) reduction in 1 mM solutions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.1 \mathrm{M} \mathrm{nBu}_{4} \mathrm{NPF}_{6}\right)$ using $\mathrm{Ag} / \mathrm{AgCl}$ electrode as the reference electrode, scan rate $=100 \mathrm{mVs}^{-1}$ at 298 K .

References

1. G. A. Crosby and J. N. Demas, The Journal of Physical Chemistry, 1971, 75, 991-1024.
2. D. F. Eaton, Pure Appl. Chem., 1988, 60, 1107-1114.
3. S. Nagarajan, C. Barthes and A. Gourdon, Tetrahedron, 2009, 65, 3767-3772.
4. D. J. Jones, B. Purushothaman, S. Ji, A. B. Holmes and W. W. H. Wong, Chemical Communications, 2012, 48, 8066-8068.
5. L. P. Wijesinghe, B. S. Lankage, G. M. O. Maille, S. D. Perera, D. Nolan, L. Wang and S. M. Draper, Chemical Communications, 2014, 50, 10637-10640.
