Electronic supplementary information

Synergistic activating effect of promoter and oxidant in single step conversion of methane into methanol over tailored polymer-Ag coordination complex.

Raghavendra Shavi^a, Vishwanath Hiremath^a, Aditya Sharma^b, Sung Ok Won^b, and Jeong Gil Seo^{a, *}.

^aDepartment of Energy Science and Technology, Myongji University, Nam-dong, Cheoin-gu, Yongin-si, Gyeonggi-do 449-728, South Korea

^bX-ray Open Laboratory, Advanced Analysis Center, Korea Institute of Science and Technology, Seoul- 02792, South Korea

M = Ag/Fe/Cu

Scheme. S1. Synthetic path way of polymer-metal complexes and their possible structures

Fig. S1. Thermogravimetric analysis (TGA) spectra obtained for Ch and prepared catalysts

The TGA curve for 'Ch' gave two sharp peaks. One below 100 and other starts at 230 ^oC which are attributed to loss of moisture and functional groups respectively. A continues slow degradation of Ch was observed after 400 ^oC which informs that the 'Ch' forming carbon at higher temperatures. After complexation the temperature required for functional groups degradation was slightly high. This is because of the strong coordination of functional groups of Ch to metal.

Fig. S2. High resolution XPS spectra for different regions of Cuch (upper row) and FeCh (lower row)

Fig. S3. Transmission Electron Microscopy (TEM) images for (a,b) FeCh and (c,d) CuCh at different magnification

Fig. S4. Ion chromatogram obtained after analyzing liquid products.

Fig. S5. FESEM- Energy Dispersive X-Ray (EDX) spectroscopic analysis for prepared catalysts.

Field Emission Scanning Electron Microscopy (FESEM) images were recorded using a Sigma Z300 instrument equipped with an energy dispersive X-ray spectrometer (EDS).

Fig. S6. FESEM elemental mapping for prepared catalysts

Serial	Sample	Test Item	value	Unit
1	AgCh	Ag	20564.95	mg/Kg
2	FeCh	Fe	86038.45	mg/Kg
3	CuCh	Cu	84970.03	mg/Kg

Table S1 (a). Metal concentration in catalysts detected by ICP-AES technique

Table S1 (b). C, H, N & S elemental concentration in catalysts

Serial	Sample	Mass (mg)	N (wt%)	C(wt%)	H(wt%)
1	Ch	1.781	7.45	41.27	7.31
2	AgCh	1.776	7.30	39.48	7.17
3	FeCh	1.768	6.41	34.85	6.26
4	CuCh	1.761	6.31	35.03	6.30

Table S2. Product quantification and percentage of CH_4 conversion for different pristine materials usedfor catalyst preparation

Entry	Catalyst	oxidant [.]	Product formed (µmol)				CH ₄
			CH ₃ OH	нсоон	CH ₃ COOH	CO ₂	(%)
1	FeNO ₃ .9H ₂ O	$\mathrm{H}_{2}\mathrm{O}_{2}$	-	24	-	-	0.02
2	CuNO ₃ .5H ₂ O	H_2O_2	-	264	-	12.3	0.20
3	AgNO ₃	H_2O_2	-	490	-	15.2	0.38
4	Ch	H_2O_2	12	24	2	0	0.03

Fig. S7 (a) Effect of CH₄ pressure on the reaction: 150 mg catalyst, 3 hr, 60 0 C (b) reusability data: 30 bar, 150 mg catalyst, 60 0 C

Fig S7 (a) informs that, the 3×10^6 Pa pressure is appropriate for the CH₄ to methanol conversion reaction using AgCh catalyst. A pressure higher than this, causes instability in the catalyst to bear pressure. The catalyst appeared to lose the coordination with metal after 3.5 10⁶ Pa pressure. A cyclic performance of the AgCh catalyst is shown in Fig.S7 (b). There was continues decrease in catalytic activity. This may be due to loss in active sight which occurs in case of coordination complexes¹.

Catalyst	Additives	Temperature (°C)	CH ₄ conversion (%)	Methanol selectivity (%)	Ref.
Al/ZSM-5	Fe	50	0.2	22	[2]
Cu-Fe/ZSM-5	-	50	0.7	85	[2]
Cu/Silicates-1	-	50	0	0	[2]
Fe-Silicate	-	70	10.5	8	[2]
AgCh	[BMIM] ⁺ Cl ⁻	60	4.5	0	This work
AgCh	[BMIM] ⁺ Cl ⁻ O ₂	60	4	54	This work
Au ⁰	2% SO ₃	180	0	0	[3]
Au^0	3 M SeO ₃ + 2% SO ₃	180	28	94	[3]
ZSM-5	-	50	1.1	11.6	[4]

Table S3. Catalysts comparison from literature for CH₄ conversion and methanol selectivity

Catalyst	Specifications	TON ^[a]	Ref.
Cu-ZSM-5	No solvent used	0.02	5
(Bipym)Pt ^{II} Cl ₂	H ₂ SO ₄ , Ionic liquid	0.5	6
Pd(OAc) ₂ , NaNO ₂ , O ₂ , Benzoquinone	CF ₃ COOH	3~7	7
FeCl ₃	aqueous	7	8
PdSO ₄	H_2SO_4	14.2	9
sMMO		19	10
AgCh	H_2O_2	22	This work
CuCh	H_2O_2	2	This work
FeCh	H_2O_2	3	This work
(FetBuPc) ₂ N/SiO ₂	H_2O_2 , H_2SO_4	209	11
K ₂ [PtCl ₄]-CTF	30% Oleum	<250	12
AgCh	H ₂ O ₂ , [BMIM] ⁺ Cl ⁻	301	This work
AgCh, O ₂	H ₂ O ₂ , [BMIM] ⁺ Cl ⁻	266	This work
AgCh	H ₂ O ₂ , [BMIM] ⁺ Br ⁻	144	This work
AgCh, O ₂	H ₂ O ₂ , [BMIM] ⁺ Br ⁻	135	This work

Table S4. Catalysts comparison for CH₄ conversion to its oxygenates in terms of TON

[a] TON = Total moles of oxygenated produced/moles of Ag utilized for the reaction

Fig. S8. A rough diagram of the instrumentation used to carry out the reaction

Notes and references

- (1) C.-C. Liu, C.-Y. Mou, S. S.-F. Yu and S. I. Chan, *Energy Environ. Sci.*, 2016, 9, 1361–1374.
- (2) C. Hammond, M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, D. M. Murphy, A. F. Carley, S. H. Taylor, D. J. Willock, E. E. Stangland, J. Kang, H. Hagen, C. J. Kiely and G. J. Hutchings, *Angew. Chemie Int. Ed.*, 2012, 51, 5129–5133.
- (3) C. J. Jones, D. Taube, V. R. Ziatdinov, R. A. Periana, R. J. Nielsen, J. Oxgaard, and W. A. Goddard, *Angew. Chem. Int. Ed.* 2004, 43, 2-5.
- (4) S. A. Shihri, C, J. Richard, D. Chadwick, ChemCatChem, 2017, 9, 1276-1283.
- M. H. Groothaert, P. J. Smeets, B. F. Sels, p. A. Jacobs, R. A. Schoonheydt, J. Am. Chem. Soc. 2005, 127, 1394–1395.
- (6) J. Cheng, Z. Li, M. Haught, Y. Tang, Chem. Commun. (Camb). 2006, No. 44, 4617–4619.
- (7) Z. An, X. Pan, X. Liu, X. Han, X. Bao, J. Am. Chem. Soc. 2006, 128, 16028–16029.
- (8) Q. Yuan, W. Deng, Q. Zhang, Y. Wang, Adv. Synth. Catal. 2007, 349, 1199–1209.
- (9) M. Zerilla, A. Kahros, A. T. Bell, J. Catal. 2006, 237, 111–117.
- (10) J. Colby, D. I. Stirling, H. Dolton, Biochem. J. 1977, 165, 395-402.
- (11) A. B. Sorokin, E. V. Kudrik, L. X. Alvarez, P. Afanasiev, M. M. J. Millet, D. Bouchu, *Catal. Today* 2010, 157, 149–154.

(12) R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas, F. Schuth, ref183. *Angew. Chem. Int. Ed. Engl.* 2009, No. 48, 6909–6912.