Electronic Supplementary Information Electronic Supplementary Information for

Stereocontrolled C(sp³)-P bond formation with nonactivated alkyl halides and tosylates

Chu-Ting Yang,^{*a*}* Jun Han, ^{*a*} Jun Liu, ^{*a*} Yi Li, ^{*a*} Fan Zhang, ^{*a*} Mei Gu, ^{*a*} Sheng Hu, ^{*a*} and Xiaolin Wang^{*a*}*

^a Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China;

E-mail:xlwang@caep.cn; yangchuting@caep.cn

Table of Contents

I.	General d	lata		•••••	• • • • • • • • • • • • •			2	
II.	Experime	ental	Procedure	s and	characte	rizatio	ons	3	-19
III.	Reference	es	•••••	•••••	•••••			20	
IV.	Copies	of	product	${}^{1}\mathrm{H}$	NMR,	¹³ C	NMR,	and	³¹ P
	NMR	•••••					• • • • • • • • • • • •	21	-66

I. General data

a. Materials

All the reactions were carried out in oven-dried Schlenk tubes under argon atmosphere (purity \geq 99.999%). Copper(I) iodide was purchased from Sinopharm Chemical Reagent Co., Ltd as a offwhite powder and refluxed in THF for further purification. The following Chemicals were purchased and used as received: LiO'Bu (99.9%, Alfa-Aesar), NaO'Bu (Acros), LiOMe (99.99%, Acros), Alcohols (Alfa-Aesa or Aldrich), PPh₃ (Aldrich), P(n-Bu)₃ (Aldrich), P(t-Bu)₃ (Aldrich), Diphenylphosphine (Aldrich), Diethyl phosphonate (Aldrich), Diphenylphosphine oxide (Aldrich), N¹,N¹,N²,N²-tetramethylethane-1,2-diamine(Alfa-Aesa), and other alkyl halides were purchased from Aldrich Chemisty or TCI AMERICA.

Anhydrous DMF (Acros), anhydrous NMP (Acros), anhydrous THF (Acros) were stored over 4 Å molecular sieves under an argon atmosphere in a septum-capped bottle. All the other reagents and solvents mentioned in this text were purchased from commercial sources and used without purification.

b. Analytical Methods

¹H-NMR, ¹³C-NMR, ³¹P-NMR spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature in CDCl₃ unless otherwise noted; Data for¹H-NMR are reported as follows: chemical shift (δ ppm), multiplicity, integration, and coupling constant (Hz). Data for ¹³C-NMR are reported in terms of chemical shift (δ ppm), multiplicity, and coupling constant (Hz). Gas chromatographic (GC) analysis was acquired on a Shimadzu GC-2014 Series GC System equipped with a flame-ionization detector. GC-MS analysis was performed on Thermo Scientific AS 3000 Series GC-MS System. HRMS analysis was performed on Finnigan LCQ advantage Max Series MS System. HPLC analysis was performed on Waters-Breeze (2487 Dual Absorbance Detector and 1525 Binary HPLC Pump). Chiralpak IC, AD, AS, KM columns were purchased from Daicel Chemical Industries, LTD.. Organic solutions were concentrated under reduced pressure on a Buchi rotary evaporator. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (200-300 mesh).

II. Experimental procedures and characterizations

Preparation of alkyl tosylates

Alkyl tosylates were prepared according to literature procedure^[1,2]. *p*-Toluenesulfonyl chloride (22.8 g, 120 mmol) was added over a period of 30 min to a stirred solution of pyridine (50mL) and alcohols (100 mmol) maintained at 0 °C. The reaction mixture was allowed to stir an additional 3 h and then quenched with H₂O (150 mL) and extracted with CH₂Cl₂ (3 *60 mL), and the combined organic layers were washed with 3 M HCl (3 *80 mL) followed by 10% NaHCO₃ (1* 80 mL). The organic layer was dried over Na₂SO₄ and concentrated under vacuum and the crude product purified by silica gel chromatography (CH₂Cl₂).

Experimental Procedures for Examples Described in Table 1.

In air, Cu-Cat. (0.025 mmol), bromocyclopentane (1a, 0.25 mmol), diphenylphosphine oxide (2a,0.5mmol), and the base (0.5 mmol) were added to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). The addtives (0.05 mmol), and solvents (0.5 mL) were added in turn under Argon atmosphere at room temperature (if the additive is a solid, it was added along with the Cu-Cat.). The reaction mixture was stirred at the mentionerd temperature for the indicated amount of time, then quenched with H₂O(10 mL). The resulting solution mixture was then extracted with CH2Cl2 (3 times, 10 mL each), dried over Mg2SO4, filtered through silica gel with copious washings (CH₂Cl₂), benzophenone (45.5mg, 0.25mmol) was added as internal standard. The product was yielded by GC.

Table S1. Reaction between 1a and 2a under various conditions.

	$-X$ + HP(O)Ph ₂ $\xrightarrow{\text{conditions}}$ $-P(O)Ph_2$							
	1a 1 equiv		2a 2 equiv		3a			
En-	v	Catalyst	Additive	Pasa (2 aguiy)	Solvent	Temp.	Yield	
try	л	(10 mol%)	(20 mol %)	Base (2 equiv.)	(0.5 mL)	(°C)	(%) ^a	
1	Br	CuI	TMEDA	LiOMe	THF	25	48	
2	Br	CuI	TMEDA	LiOMe	Toluene	25	12	
3	Br	CuI	TMEDA	LiOMe	Dioxane	25	21	
4	Br	CuI	TMEDA	LiOMe	DMF	25	68	
5	Br	CuI	TMEDA	LiOMe	DMSO	25	65	
6	Br	CuI	TMEDA	LiOMe	NMP	25	74	
7	Br	CuI	TMEDA	LiOMe	NMP	40	89	
8	Br	-	TMEDA	LiOMe	NMP	40	88(85 ^b)	
9	Br	-	TMEDA	LiO'Bu	NMP	40	78	

							• •
10	Br	-	TMEDA	NaO'Bu	NMP	40	69
11	Br	-	TMEDA	NaOMe	NMP	40	71
12	Br	-	TMEDA	Cs_2CO_3	NMP	40	58
13	Br	-	TMEDA	K ₂ CO ₃	NMP	40	16
14	Br	-	TMEDA	LiHMDS	NMP	40	42
15	Br	-	TMEDA	KHMDS	NMP	40	54
16	Br	-	TMEDA	Trimethylamine	NMP	40	5
17	Br	-	TMEDA	DABCO	NMP	40	7
18	Br	-	TMEDA	DBU	NMP	40	11
19	Br	-	TMEDA	DMAP	NMP	40	23
20	Br	-	P ⁿ Bu ₃	LiOMe	NMP	40	73
21	Br	-	PPh ₃	LiOMe	NMP	40	63
22	Br	-	DMEDA	LiOMe	NMP	40	72
23	Br	-	-	LiOMe	NMP	40	55
24	OTs	-	TMEDA	LiOMe	NMP	40	85(81 ^b)
25	Ι	-	TMEDA	LiOMe	NMP	40	76
26	Cl	-	TMEDA	LiOMe	NMP	40	21

^{*a*} Reaction conditions: R-X (0.25 mmol), HP(O)Ph₂ (0.5 mmol), CuI (10 mol%), additive (20 mol%), Base (0.5 mmol), GC yields after 24 hours (average of two runs). ^{*b*} Isolated yields.

Experimental Procedures for Examples Described in Table 2.

Gengeral Procedure A. In air, diphenylphosphine oxide (2a,0.5mmol), and LiOMe (0.5 mmol) were added to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). The TMEDA (0.05 mmol), NMP (0.5 mL) and the alkyl bromide (0.25 mmol),were added in turn under Argon atmosphere at room temperature (if alkyl bromide is a solid, it was added along with 2a). The reaction mixture was stirred at 40 °C for 24 h, then quenched with H₂O (10 mL). The resulting solution mixture was then extracted with CH₂Cl₂ (3 times, 10 mL each), dried over Mg₂SO₄, The resulting solution mixture was then extracted with CH₂Cl₂ (3 times, 10 mL each), dried over Mg₂SO₄, filtered through silica gel with copious washings (CH₂Cl₂), concentrated, and purified by column chromatography.

Gengeral Procedure B. In air, diphenylphosphine oxide (2a, 0.5mmol), and LiOMe (0.5 mmol) were added to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). The TMEDA (0.05 mmol), NMP (0.5 mL), and the alkyl tosylate (0.25 mmol) were added in turn under Argon atmosphere at room temperature (if alkyl tosylate is a solid, it was added along with 2a). The reaction mixture was stirred at 40 °C for 24 h, then quenched with H₂O (10 mL). The resulting solution mixture was then extracted with CH₂Cl₂ (3 times, 10 mL each),

dried over Mg_2SO_4 , The resulting solution mixture was then extracted with CH_2Cl_2 (3 times, 10 mL each), dried over Mg_2SO_4 , filtered through silica gel with copious washings (CH_2Cl_2), concentrated, and purified by column chromatography.

Gengeral Procedure C. In air, diphenylphosphine oxide (2a, 1mmol), and LiOMe (1 mmol) were added to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). The TMEDA (0.05 mmol), NMP (0.5 mL), and 1,3-dibromobutane (0.25 mmol) were added in turn under Argon atmosphere at room temperature. The reaction mixture was stirred at 40 °C for 24 h, then quenched with H₂O (10 mL). The resulting solution mixture was then extracted with CH_2Cl_2 (3 times, 10 mL each), dried over Mg_2SO_4 , The resulting solution mixture was then extracted with CH_2Cl_2 (3 times, 10 mL each), dried over Mg_2SO_4 , filtered through silica gel with copious washings (CH_2Cl_2), concentrated, and purified by column chromatography.

Cyclopentyldiphenylphosphine oxide (3a), following general procedure A, white solid. ¹H NMR (400 MHz, DMSO) δ 7.82 (ddd, *J*= 10.8, 7.7, 1.6 Hz, 4H), 7.62 - 7.28 (m, 6H), 3.20 - 3.04 (m, 1H), 1.78 - 1.42 (m, 8H) ppm. ¹³C NMR (101 MHz, DMSO) δ 134.8 (d, *J* = 94.0 Hz), 131.8 (d, *J* = 2.4 Hz), 130.9 (d, *J* = 9.0 Hz), 1291 (d, *J* = 11.0 Hz), 35.8 (d, *J* = 75.2 Hz), 27.0 (d, *J* = 8.2 Hz), 26.3 ppm. HRMS calcd for C₁₇H₁₉OP (M+): 270.1174; found: 270.1176.

Cyclohexyldiphenylphosphine oxide (3b), following general procedure A, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.70 (m, 4H), 7.55 – 7.41 (m, 6H), 2.32 – 2.16 (m, 1H), 1.90 – 1.62 (m, 5H), 1.61 – 1.43 (m, 2H), 1.32 – 1.19 (m, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 132.0 (d, *J* = 94.3 Hz), 131.5 (d, *J* = 2.5 Hz), 131.1 (d, *J* = 8.6 Hz), 128.6 (d, *J* = 11.1 Hz), 37.2 (d, *J* = 73.0 Hz), 26.4 (d, *J* = 13.3 Hz), 25.8, 24.8 (d, *J* = 2.7 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 34.7 ppm. HRMS calcd for C₁₈H₂₁OP (M+): 284.1330; found: 284.1326.

Cycloheptyldiphenylphosphine oxide (3c), following general procedure A, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.65 (m, 4H), 7.63 – 7.32 (m, 6H), 2.41 (tdd, *J* = 13.6, 10.0, 3.5 Hz, 1H), 1.91 – 1.41 (m, 12H) ppm.¹³C NMR (101 MHz, CDCl₃) δ 132.6(d, *J* = 94.2 Hz), 131.4 (d, *J* = 2.5 Hz), 131.0 (d, *J* = 8.6 Hz), 128.6 (d, *J* = 11.1 Hz), 37.7 (d, *J* = 70.2 Hz), 28.1 (d, *J* = 14.7 Hz), 28.0, 26.7 (d, *J* = 1.3 Hz) ppm. HRMS calcd for C₁₉H₂₃OP(M+): 298.1487; found:298.1488.

Cyclobutyldiphenylphosphine oxide (3d), following general procedure A, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.62 (m, 4H), 7.53 – 7.41 (m, 6H), 3.47 – 3.16 (m, 1H), 2.63 – 2.39 (m, 2H), 2.20 – 1.98 (m, 4H) ppm.¹³C NMR (101 MHz, CDCl₃) δ 132.5(d, *J* = 97.2 Hz), 131.6 (d, *J* = 2.2 Hz), 131.0 (d, *J* = 9.2 Hz), 128.6 (d, *J* = 11.5 Hz), 32.6 (d, *J* = 73.2 Hz), 21.3 (d, *J* = 5.2 Hz), 20.2(d, *J* = 15.2 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 32.5 ppm. HRMS calcd for C₁₆H₁₇OP (M+): 256.1017; found: 256.1017.

(1-(benzo[d][1,3]dioxol-5-yl)butan-2-yl)diphenylphosphine oxide (3e), following general procedure B, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.75 (m, 4H), 7.47 (dd, *J* = 12.6, 6.8 Hz, 6H), 6.64 (d, *J* = 7.8 Hz, 1H), 6.54 (d, *J* = 9.8 Hz, 2H), 5.90 (s, 2H), 2.99 – 2.85 (m, 1H), 2.77 (dt, *J* = 14.4, 9.4 Hz, 1H), 2.48 (dd, *J* = 13.0, 7.6 Hz, 1H), 1.80 – 1.63 (m, 2H), 0.82 (t, *J* = 7.5 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 147.5, 145.9, 132.8(d, *J* = 95.7 Hz), 131.5 (d, *J* = 10.6 Hz,), 130.8 (d, *J* = 8.6 Hz), 128.6 (d, *J* = 11.2 Hz), 121.9, 109.1, 108.1, 100.8, 41.01 (d, *J* = 69.0 Hz), 32.9, 20.5, 12.5 (d, *J* = 7.3 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 35.4 ppm. HRMS calcd for C₂₃H₂₃O₃P (M+): 378.1385; found: 378.1386.

Diphenyl(4-phenylbutan-2-yl)phosphine oxide (3f), following general procedure B, colourless solid. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (ddd, J = 19.4, 9.9, 8.4 Hz, 4H), 7.50 – 7.34 (m, 6H), 7.23 (dt, J = 14.1, 7.3 Hz, 3H), 7.05 (d, J = 7.4 Hz, 2H), 2.90 – 2.80 (m, 1H), 2.63 – 2.47 (m, 1H), 2.42 – 2.24 (m, 1H), 2.03 – 1.89 (m, 1H), 1.79 (qd, J = 13.8, 5.1 Hz, 1H), 1.22 (dd, J = 16.7, 7.0 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 132.2 (d, J = 94.8 Hz), 131.4 (dd, J = 6.2, 2.5 Hz), 130.91 (dd, J = 8.6, 5.0 Hz), 128.5 (dd, J = 11.1, 2.1 Hz), 128.5, 128.4, 126.0, 33.0 (d, J = 12.7 Hz), 30.5 (d, J = 72.5 Hz), 30.3, 29.6 ppm. HRMS calcd for C₂₂H₂₃OP (M+): 334.1487; found: 334.1482.

Diphenyl(1-tosylpiperidin-4-yl)phosphine oxide (3g), following general procedure B, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.68 (m, 4H), 7.61 (d, *J* = 8.1 Hz, 2H), 7.57 – 7.45 (m, 6H), 7.31 (d, *J* = 8.0 Hz, 2H), 3.84 (dd, *J* = 11.0, 2.0 Hz, 2H), 2.43 (s, 3H), 2.36 – 2.25 (m, 2H), 2.24 – 1.77 (m, 5H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 132.4 (d, *J* = 99.9 Hz), 132.1 (d, *J* = 1.9 Hz), 131.2 (d, *J* = 8.8 Hz), 129.7, 128.8 (d, *J* = 11.4 Hz), 128.7, 127.7, 46.1(d, *J* = 14.0 Hz), 30.5 (d, *J* = 69.9 Hz), 24.2 (d, *J* = 1.2 Hz), 21.6 ppm. ³¹P NMR (162 MHz, CDCl₃) δ 33.5 ppm. HRMS calcd for C₂₄H₂₆NO₃PS (M+): 439.1371; found: 439.1374.

Hexyldiphenylphosphine oxide (3h), following general procedure A, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.86 - 7.61 (m, 4H), 7.60 - 7.35 (m, 6H), 2.34 - 2.13 (m, 2H), 1.72 - 1.52 (m, 2H), 1.47 -

1.33 (m, 2H), 1.29 - 1.18 (m, 4H), 0.84 (t, J = 6.9 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 133.5 (d, J = 97.7 Hz), 131.6 (d, J = 2.7 Hz), 130.8 (d, J = 9.4 Hz), 128.6 (d, J = 11.5 Hz), 31.2, 30.6 (d, J = 14.6 Hz), 29.7 (d, J = 71.9 Hz), 22.4, 21.4(d, J = 3.9 Hz), 14.0 ppm. HRMS calcd for C₁₈H₂₃OP (M+): 286.1487; found: 286.1488.

(2-ethylhexyl)diphenylphosphine oxide (3i), following general procedure B, pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.66 (m, 4H), 7.59 – 7.39 (m, 6H), 2.22 (dd, *J* = 11.1, 6.2 Hz, 2H), 1.86 (dt, *J* = 12.5, 6.2 Hz, 1H), 1.60 – 1.23 (m, 4H), 1.21 – 1.07 (m, 4H), 0.96 – 0.68 (m, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 134.0 (dd, *J* = 97.3, 19.6 Hz), 131.5 (d, *J* = 2.5 Hz), 130.7 (dd, *J* = 9.0, 6.8 Hz), 128.6 (d, *J* = 11.4 Hz), 33.7 (d, *J* = 8.0 Hz), 33.6 (d, *J* = 3.7 Hz), 33.5 (d, *J* = 71.5 Hz), 28.2, 27.0 (d, *J* = 7.5 Hz), 22.7, 14.0, 10.2 ppm. ³¹P NMR (162 MHz, CDCl₃) δ 31.8 ppm. HRMS calcd for C₂₀H₂₇OP (M+): 314.1800; found: 314.1801.

Butane-1,3-diylbis(diphenylphosphine oxide) (3j), following general procedure C, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.56 (m, 8H), 7.55 – 7.32 (m, 12H), 2.86 – 1.77 (m, 5H), 1.19 (dd, *J* = 16.2, 6.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 133.1 (d, *J* = 98.6 Hz), 131.9 (dd, *J* = 95.2, 14.6 Hz), 131.7 (dd, *J* = 10.3, 2.5 Hz),131.6, 130.8 (d, *J* = 10.1 Hz), 130.6 (d, *J* = 9.4 Hz), 128.7 (dd, *J* = 11.4, 1.8 Hz), 128.6 (d, *J* = 11.5 Hz), 31.7 (dd, *J* = 71.4, 11.0 Hz), 26.4 (dd, *J* = 71.6, 8.8 Hz), 22.1 (d, *J* = 1.9 Hz), 12.1 (d, *J* = 2.0 Hz) ppm.³¹P NMR (162 MHz, CDCl₃) δ 37.1, 33.2 ppm. HRMS calcd for C₂₈H₂₈O₂P₂ (M+): 458.1565; found: 458.1566.

Diphenyl(2-(thiophen-2-yl)ethyl)phosphine oxide (3k), following general procedure B, pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.71 (m, 4H), 7.60 – 7.43 (m, 6H), 7.23 (dd, J = 4.8, 2.9 Hz, 1H), 7.02 – 6.86 (m, 2H), 3.06 – 2.86 (m, 2H), 2.65 – 2.54 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ141.3 (d, J = 16.0 Hz), 132.6 (d, J = 98.8 Hz), 131.9 (d, J = 2.3 Hz), 130.8 (d, J = 9.4 Hz), 128.7 (d, J = 11.7 Hz), 127.7, 125.9, 120.5, 30.9 (d, J = 70.4 Hz), 22.2 ppm. ³¹P NMR (162 MHz, CDCl₃) δ 31.8 ppm. HRMS calcd for C₁₈H₁₇OSP (M+): 312.0738; found: 312.0734.

((1,3-dioxolan-2-yl)methyl)diphenylphosphine oxide (31), following general procedure A, colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, *J* = 11.9, 7.0 Hz, 4H), 7.50 (ddd, *J* = 11.6, 10.0, 5.7 Hz, 6H), 5.31 – 5.16 (m, 1H), 3.92 (t, *J* = 6.9 Hz, 2H), 3.79 (t, *J* = 6.9 Hz, 2H), 2.81 (dd, *J* = 11.8, 5.0 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 132.2(d, *J* = 96 Hz), 131.9 (d, *J* = 2.0 Hz), 130.9 (d, *J* = 9.6 Hz), 128.6 (d, *J* = 12.0 Hz), 99.9, 65.0, 29.7 ppm. ³¹P NMR (162 MHz, CDCl₃) δ 28.0 ppm.HRMS calcd for C₁₆H₁₇O₃P (M+): 288.0915; found: 288.0918.

5-(diphenylphosphoryl)pentanenitrile (3m), following general procedure A, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.68 (m, 4H), 7.60 – 7.39 (m, 6H), 2.40 – 2.24 (m, 4H), 1.87 – 1.68 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 132.5 (d, *J* = 98.9 Hz), 132.0 (d, *J* = 2.7 Hz), 130.7 (d, *J* = 9.4 Hz), 128.8 (d, *J* = 11.7 Hz), 119.2, 29.0 (d, *J* = 71.7 Hz), 26.4 (d, *J* = 13.8 Hz), 21.0 (d, *J* = 3.6 Hz), 16.9 ppm. ³¹P NMR (162 MHz, CDCl₃) δ 31.9 ppm. HRMS calcd for C₁₇H₁₈NOP(M+): 283.1126; found:

283.1124.

2-(3-(diphenylphosphoryl)propyl)isoindoline-1,3-dione(3n), following general procedure A, white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.82 (dd, J = 5.4, 3.0 Hz, 2H), 7.71 (ddd, J = 6.3, 5.0, 3.9 Hz, 6H), 7.51 (td, J = 7.4, 1.3 Hz, 2H), 7.45 (ddd, J = 8.3, 5.2, 2.2 Hz, 4H), 3.77 (t, J = 6.8 Hz, 2H), 2.33 (ddd, J = 11.7, 8.4, 4.9 Hz, 2H), 2.02 – 1.95 (m, 2H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 133.0, 131.4 (d, J = 99.4 Hz), 131.0, 130.9 (d, J = 2.8 Hz), 129.8 (d, J = 9.0 Hz), 127.7 (d, J = 11.5 Hz), 122.3, 37.5 (d, J = 17.3 Hz), 26.4 (d, J = 72.4 Hz), 20.2 (d, J = 2.8 Hz) ppm. HRMS calcd for C₂₃H₂₀NO₃P(M+): 389.1181; found: 389.1184.

Methyl 5-(diphenylphosphoryl)pentanoate (30), following general procedure A, white solid.¹H NMR (600 MHz, CDCl₃) δ 7.76 – 7.70 (m, 4H), 7.52 (td, *J* = 7.6, 1.2 Hz, 2H), 7.47 (ddd, *J* = 8.4, 5.2, 2.0 Hz, 4H), 3.62 (s, 3H), 2.29 (dt, *J* = 8.0, 5.1 Hz, 4H), 1.75 (dt, *J* = 14.9, 7.4 Hz, 2H), 1.66 (ddd, *J* = 8.6, 6.6, 2.7 Hz, 2H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 173.6, 132.9(d, *J* = 98.2 Hz), 131.8 (d, *J* = 2.6 Hz, 2H), 130.8 (d, *J* = 9.0 Hz), 128.7(d, *J* = 11.8 Hz), 51.5, 33.5, 29.5(d, *J* = 72.0 Hz), 26.1(d, *J* = 15.3 Hz), 21.1(d, *J* = 3.8 Hz) ppm. HRMS calcd for C₁₈H₂₁O₃P (M+): 316.1228; found: 316.1229.

Methyl 3-(3-(diphenylphosphoryl)propoxy)benzoate (3p), following general procedure A, white solid. ¹H NMR (600 MHz, CDCl₃) δ 7.76 (dd, J = 10.4, 8.0 Hz, 4H), 7.62 (d, J = 7.8 Hz, 1H), 7.53 – 7.44 (m, 7H), 7.31 (t, J = 8.0 Hz, 1H), 7.04 (dd, J = 8.2, 1.9 Hz, 1H), 4.05 (t, J = 5.8 Hz, 2H), 3.91 (s,

3H), 2.45-2.53 (m, 2H), 2.10-2.17 (m, 2H) ppm.¹³C NMR (151 MHz, CDCl₃) δ 166.9, 158.6, 132.8 (d, J = 99.0Hz, 1H), 131.9,131.8 (d, J = 2.8 Hz), 130.8 (d, J = 9.1 Hz),129.4, 128.7 (d, J = 11.4 Hz), 122.1, 119.6, 114.8, 67.7 (d, J = 14.0 Hz), 29.8 (d, J = 72.2 Hz), 21.8 (d, J = 1.7 Hz) ppm. HRMS calcd for C₂₃H₂₃O₄P (M+):394.1334; found: 394.1335.

Experimental Procedure for Example Described in Scheme 1.

In air, 4-bromophenethyl 4-methylbenzenesulfonate (1b, 0.5mmol), diphenylphosphine oxide (2a, 0.5mmol), and LiOMe(0.5 mmol) were added to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). The TMEDA (0.05 mmol), and NMP (0.5 mL) were added in turn under Argon atmosphere at room temperature. The reaction mixture was stirred at 40 °C for 24 h, then quenched with H₂O (10 mL). The resulting solution mixture was then extracted with $CH_2Cl_2(3 \text{ times}, 10 \text{ mL each})$, dried over Mg_2SO_4 , The resulting solution mixture was then extracted with CH_2Cl_2 (3 times, 10 mL each), dried over Mg_2SO_4 , filtered through silica gel with copious washings (CH_2Cl_2), concentrated, and purified by column chromatography.

(4-bromophenethyl)diphenylphosphine oxide (3n), white solid. ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.71 (m, 4H), 7.58 – 7.45 (m, 6H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.03 (d, *J* = 8.3 Hz, 2H), 2.99 – 2.78 (m, 2H), 2.66 – 2.41 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 140.1 (d, *J* = 14.9 Hz), 132.5 (d, *J* = 98.5 Hz), 131.9 (d, *J* = 1.6 Hz), 130.8 (d, *J* = 9.1 Hz), 131.7, 129.9, 128.8 (d, *J* = 11.5 Hz), 120.1, 29.7 (d, *J* = 3.7 Hz), 27.05 (d, *J* = 2.1 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 31.5 ppm. HRMS calcd for C₂₀H₁₈OPBr (M+):384.0279; found: 384.0281.

Experimental Procedures for Examples Described in Table 3.

Gengeral Procedure D. In air, $Cs_2CO_3(0.5 \text{ mmol})$ was added to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). The TMEDA (0.05

mmol), NMP (0.5 mL), diethyl phosphonate (4a, 0.5mmol), and the alkyl bromide (0.25 mmol) were added in turn under Argon atmosphere at room temperature. The reaction mixture was stirred at 40 °C for 24 h, then quenched with H₂O (10 mL). The resulting solution mixture was then extracted with $CH_2Cl_2(3$ times, 10 mL each), dried over Mg_2SO_4 , The resulting solution mixture was then extracted with $CH_2Cl_2(3$ times, 10 mL each), dried over Mg_2SO_4 , filtered through silica gel with copious washings (CH_2Cl_2), concentrated, and purified by column chromatography.

Gengeral Procedure E. In air, LiOMe (0.5 mmol) was added to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). The TMEDA (0.05 mmol), NMP (0.5 mL), the alkyl bromide (0.25 mmol), and diphenylphosphine (4b, 0.5mmol) were added in turn under Argon atmosphere at room temperature. The reaction mixture was stirred at 40 °C for 24 h, then quenched with H₂O (10 mL). The resulting solution mixture was then extracted with $CH_2Cl_2(3$ times, 10 mL each), dried over Mg_2SO_4 , The resulting solution mixture was then extracted with $CH_2Cl_2(3$ times, 10 mL each), dried over Mg_2SO_4 , filtered through silica gel with copious washings (CH_2Cl_2), concentrated, and purified by column chromatography.

Gengeral Procedure F. In air, LiOMe (1 mmol) was added to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). The TMEDA (0.05 mmol), NMP (0.5 mL), the alkyl bromide (0.25 mmol), and diphenylphosphine (4b, 1mmol) were added in turn under Argon atmosphere at room temperature. The reaction mixture was stirred at 40 °C for 24 h, then quenched with H_2O (10 mL). The resulting solution mixture was then extracted with $CH_2Cl_2(3$ times, 10 mL each), dried over Mg_2SO_4 , The resulting solution mixture was then extracted with CH_2Cl_2 (3 times, 10 mL each), dried over Mg_2SO_4 , filtered through silica gel with copious washings (CH_2Cl_2), concentrated, and purified by column chromatography.

Diethyl 3-phenylpropylphosphonate (5a), following general procedure D, colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, *J*= 7.4 Hz, 2H), 7.12 (dd, *J*= 12.5, 7.1 Hz, 3H), 4.11 – 3.91 (m, 4H), 2.63 (t, *J*= 7.5 Hz, 2H), 1.86 (ddd, *J*= 10.8, 8.0, 3.4 Hz, 2H), 1.71 – 1.62 (m, 2H), 1.23 (t, *J*= 7.1 Hz, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 127.5, 127.4, 125.1, 60.5 (d, *J*= 6.5 Hz), 35.4 (d, *J*= 17.1 Hz), 24.1 (d, *J*= 141.0 Hz), 23.1 (d, *J*= 4.9 Hz), 15.4 (d, *J*= 5.9 Hz) ppm. HRMS calcd for C₁₃H₂₁O₃P

(M+): 256.1228; found: 256.1229.

Cyclohexyldiphenylphosphine (5b)³, following general procedure E, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.43 (m, 4H), 7.43 – 7.23 (m, 6H), 2.35 – 2.11 (m, 1H), 1.84 – 1.55 (m, 5H), 1.42 – 1.08 (m, 5H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 136.9 (d, *J* = 13.1 Hz), 133.6 (d, *J* = 19.0 Hz), 128.6, 128.3 (d, *J* = 7.1 Hz), 35.40(d, *J* = 8.3 Hz), 29.6 (d, *J* = 15.2 Hz), 26.8 (d, *J* = 11.3 Hz), 26.4 ppm. ³¹P NMR (162 MHz, CDCl₃) δ -3.6 ppm. HRMS calcd for C₁₈H₂₁P(M+):268.1381; found: 268.1379.

Ph₂P^{Ph₂}PPh₂

Bis(diphenylphosphino)methane $(5c)^4$, following general procedure F, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.38 (m, 8H), 7.35 – 7.24 (m, 12H), 2.80 (s, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 138.6(t, *J* = 3.3 Hz), 132.8 (t, *J* = 10.3 Hz), 128.7, 128.4 (t, *J* = 3.6 Hz), 27.9 (t, *J* = 22.6 Hz) ppm. HRMS calcd for C₂₅H₂₂P₂(M+): 384.1197; found: 384.1199.

1,3-bis(diphenylphosphino)propane (5d)⁵, following general procedure F, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 20H), 2.20 (t, *J* = 7.6 Hz, 4H), 1.69 – 1.53 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 138.3 (d, *J* = 11.8 Hz), 132.7 (d, *J* = 18.4 Hz), 128.6, 28.4 (d, *J* = 6.8 Hz), 29.6 (t, *J* = 12.1 Hz), 22.3 (t, *J* = 16.8 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃) δ -17.4 ppm. HRMS calcd for C₂₇H₂₆P₂(M+): 412.1510; found: 412.1512.

Ph₂P PPh₂

1,4-bis(diphenylphosphino)butane (5e)⁴, following general procedure F, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.25 (m, 20H), 2.02 (t, *J* = 7.2 Hz, 4H), 1.62 – 1.46 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 138.5 (d, *J* = 11.9 Hz), 132.7 (d, *J* = 18.4 Hz), 128.5, 128.4 (d, *J* = 6.8 Hz, 1H). 27.6(dd, *J* = 12.8, 5.2 Hz), 27.4 ppm. HRMS calcd for C₂₈H₂₈P₂(M+): 426.1666; found:426.1664.

Experimental Procedure for Example Described in Scheme 2.

In air, diphenylphosphine oxide (2a, 0.5mmol), and LiOMe(0.5 mmol) were added to a Schlenk

tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). The TMEDA (0.05 mmol), 6-bromohex-1-ene (6a, 0.25mmol, and NMP (0.5 mL) were added in turn under Argon atmosphere at room temperature. The reaction mixture was stirred at 40 °C for 24 h, then quenched with H₂O (10 mL). The resulting solution mixture was then extracted with $CH_2Cl_2(3 \text{ times}, 10 \text{ mL each})$, dried over Mg_2SO_4 , The resulting solution mixture was then extracted with $cH_2Cl_2(3 \text{ times}, 10 \text{ mL each})$, dried over Mg_2SO_4 , filtered through silica gel with copious washings (CH_2Cl_2), concentrated, and purified by column chromatography.

Hex-5-en-1-yldiphenylphosphine oxide (7), colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.67 (m, 4H), 7.58 – 7.39 (m, 6H), 5.74 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.02 – 4.81 (m, 2H), 2.27 (dd, *J* = 16.3, 11.1 Hz, 2H), 2.04 (dd, *J* = 14.6, 6.9 Hz, 2H), 1.69 – 1.60 (m, 2H), 1.51 (dd, *J* = 14.8, 7.6 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 138.1, 131.9 (d, *J* = 2.3 Hz), 130.9 (d, *J* = 9.4 Hz), 128.7 (d, *J* = 11.7 Hz), 114.9, 33.2, 30.1 (d, *J* = 14.7 Hz), 29.7, 21.0 (d, *J* = 3.7 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 34.5 ppm. HRMS calcd for C₁₈H₂₁OP (M+):284.1330; found: 284.1333.

Experimental Procedures for Examples Described in Table 3.

Gengeral Procedure. In air, diphenylphosphine oxide (2a, 0.5mmol), and LiOMe(0.5 mmol) were added to a Schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). The TMEDA (0.05 mmol), NMP (0.5 mL), and the alkyl tosylate (0.25 mmol) were added in turn under Argon atmosphere at room temperature (if alkyl tosylate is a solid, it was added along with 2a). The reaction mixture was stirred at 40 °C for 24 h, then quenched with H₂O (10 mL). The resulting solution mixture was then extracted with CH₂Cl₂(3 times, 10 mL each), dried over Mg₂SO₄, The resulting solution mixture was then extracted with CH₂Cl₂ (3 times, 10 mL each), dried over Mg₂SO₄, filtered through silica gel with copious washings (CH₂Cl₂), concentrated, and purified by column chromatography.

(R)-tert-butyl 3-(diphenylphosphoryl)pyrrolidine-1-carboxylate (9a, 99% ee), colourless solid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.67 (m, 4H), 7.62 – 7.41 (m, 6H), 3.58 (brs, 3H), 3.30 (td, *J* = 10.1, 7.1 Hz, 1H), 3.04 (brs, 1H), 2.29 (brs, 1H), 2.07 – 1.83 (m, 1H), 1.42 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 132.1 (d, *J* = 6.7 Hz), 130.9 (d, *J* = 9.0 Hz), 128.84 (dd, *J* = 11.5, 3.4 Hz), 79.6, 46.1 (d, *J* = 8.5 Hz), 31.9, 29.7, 29.4, 28.4, 22.7 ppm. ³¹P NMR (162 MHz, CDCl₃): δ 30.6 ppm. HRMS calcd for C₂₁H₂₆NO₃P(M+): 371.1650; found:371.1648. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel OD column, 1 mL/min, hexane /i-PrOH 95:5 , retention times (min.): 35.6(minor) and 41.9(major).

(S)-diphenyl(1-tosylpyrrolidin-3-yl)phosphine oxide (9b, 95% ee), white solid ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.63 (m, 6H), 7.60 – 7.42 (m, 6H), 7.32 (d, *J* = 8.1 Hz, 2H), 3.64 – 3.55 (m, 1H), 3.40 (dd, *J* = 17.3, 7.7 Hz, 1H), 3.32 – 3.16 (m, 2H), 3.05 (dd, *J* = 10.1, 8.1 Hz, 1H), 2.44 (s, 3H), 2.12 (ddd, *J* = 12.5, 10.9, 4.0 Hz, 1H), 1.96 (ddd, *J* = 12.4, 8.4, 4.5 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 132.6 (d, *J* = 74.1 Hz), 132.4 (d, *J* = 2.6 Hz), 130.8 (d, *J* = 9.5 Hz), 129.9, 129.0 (d, *J* = 11.6 Hz), 128.9, 127.6, 47.8, 37.4 (d, *J* = 75.1 Hz), 29.7, 25.3, 21.6 ppm. ³¹P NMR (162 MHz, CDCl₃) δ 30.6 ppm. HRMS calcd for C₂₃H₂₄NO₃PS (M+): 425.1215; found: 425.1219. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel OD column, 1 mL/min, hexane /i-PrOH 70:30 , retention times (min.): 8.9(major) and 11.9 (minor).

16

(R)-3- diphenylphosphoryltetrahydrofuran (9c, 98% ee), colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.72 (m, 4H), 7.56-7.47 (m, 6H), 4.04 – 3.92 (m, 2H), 3.86 (t, *J* = 6.8 Hz, 2H), 3.16 – 3.04 (m, 1H), 2.32 (ddd, *J* = 16.8, 10.0, 5.7 Hz, 1H), 2.13 – 2.05 (m, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 132.3 (d, *J* = 98.3 Hz, 1H), 132.0 (dd, *J* = 6.8, 2.7 Hz), 130.8 (dd, *J* = 9.2, 3.9 Hz), 128.8 (dd, *J* = 11.5, 2.9 Hz), 68.8 (d, *J* = 7.8 Hz), 67.6 (d, *J* = 2.1 Hz), 38.1 (d, *J* = 75.2 Hz), 26.9 (d, *J* = 1.5 Hz) ppm. HRMS calcd for C₁₆H₁₇O₂P (M+): 272.0966; found: 272.0966. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel IC column, 1 mL/min, hexane /i-PrOH 70:30 , retention times (min.): 30.5 (major) and 41.2 (minor).

(S)-sec-butyldiphenylphosphine oxide (9d, 96% ee), colourless solid. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.70 (m, 4H), 7.56 – 7.37 (m, 6H), 2.34 – 2.23 (m, 1H), 1.81 – 1.67 (m, 1H), 1.52 – 1.39 (m, 1H), 1.17 (dd, *J* = 16.9, 7.1 Hz, 3H), 0.98 (t, *J* = 7.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 132.2 (d, *J* = 94.5 Hz), 131.5 (d, *J* = 2.5 Hz), 131.1 (d, *J* = 8.6 Hz), 128.6 (dd, *J* = 11.1, 2.8 Hz), 33.8(d, *J* = 72.0 Hz), 22.1 (d, *J* = 1.2 Hz), 12.3 (d, *J* = 13.3 Hz), 11.6 (d, *J* = 2.6 Hz) ppm. ³¹P NMR (162 MHz, CDCl₃) δ 37.6 ppm. HRMS calcd for C₁₆H₁₉OP (M+): 258.1174; found: 258.1178. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel IC column, 1 mL/min, hexane /i-PrOH 70:30 , retention times (min.): 12.1 (minor) and 16.1 (major)

18

(R)-diphenyl(4-phenylbutan-2-yl)phosphine oxide (9e, 97% ee), colourless solid. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel AD column, 0.5 mL/min, hexane /i-PrOH 90:10, retention times (min.): 29.8 (major) and 35.9 (minor).

(R)-(1-methoxypropan-2-yl)diphenylphosphine oxide (9f, 98%ee), colourless liquid.¹H NMR (400

MHz, CDCl₃) δ 7.83-7.75 (m, 4H), 7.53-7.43 (m, 6H), 3.60 (td, J = 9.1, 4.3 Hz, 1H), 3.46 (dd, J = 16.7, 9.1 Hz, 1H), 3.22 (s, 3H), 2.75 (dt, J = 11.7, 7.8 Hz, 1H), 1.23 (dd, J = 16.4, 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 132.0(d, J = 96.1 Hz), 131.7 (d, J = 2.0 Hz), 131.0 (d, J = 8.9 Hz), 128.6 (d, J = 11.2 Hz), 72.01 (d, J = 3.1 Hz), 58.8, 33.9 (d, J = 71.3 Hz), 10.9 (d, J = 3.2 Hz) ppm.³¹P NMR (162 MHz, CDCl₃) δ 34.3 ppm. HRMS calcd for C₁₆H₁₉O₂P (M+): 274.1123; found: 274.1121. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel IC column, 0.5 mL/min, hexane /i-PrOH 70:30 , retention times (min.): 12.0 (major) and 16.0 (minor).

III. References

- (a) D. H. Burns, J. D. Miller, H. K. Chan and M. O. Delaney, J. Am. Chem. Soc. 1997, 119, 2125; (b) A. Corruble, J.-Y. Valnot, J. Maddaluno and P. Duhamel, J. Org. Chem. 1998, 63, 8266.
- 2 C.-T. Yang, Z.-Q. Zhang, J. Liang, J.-H. Liu, X.-Y. Lu, H.-H. Chen and L. Liu, J. Am. Chem. Soc., 2012, 134, 11124.
- S. E. Vaillard, C. Mück-Lichtenfeld, S. Grimme and A. Studer, *Angew. Chem. Int. Ed.* 2007, 46, 6533.
- 4 M. T. Honaker, B. J. Sandefur, J. L. Hargett, A. L. McDaniel and R. N. Salvatore, *Tetrahdron Lett.* 2003, 44, 8373.
- 5 Y. Li, S. Das, S. Zhou, K. Junge and M. Beller, J. Am. Chem. Soc. 2012, 134, 9727.

IV. Copies of product ¹H NMR, ¹³C NMR, and ³¹P NMR

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

33

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information Cy-PPh₂

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

Electronic Supplementary Information

80 70 fl(ppm)

t20

-2E+07 -1E+07 -0 --1E+07

