Supporting Information for A Comprehensive Understanding of Water Photooxidation on Ag₃PO₄ Surfaces

Zuju Ma, ¹ Sen Lin, ² Rongjian Sa, ¹ Qiaohong Li¹ and Kechen Wu^{1,a)}

 ¹ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
² State Key Laboratory of photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China

^{a)} Author to whom correspondence should be addressed. Electronic mail: wkc@fjirsm.ac.cn.

Fig.S1. The sliced terminations of a cubic Ag_3PO_4 crystal at vertical [100] (a), [110] (b), and [111] (c) direction.

Table S1. The total energies (E: eV) and formation energies (E_f : J/m²) of surfaceterminated models depicted in Fig.S1. The surface was modeled using a period slab with a vacuum space of 15 Å in the direction of surface normal and a thickness that contains six Ag₃PO₄ units.

100			110			111		
Тор	Е	Ef	Тор	E	Ef	Тор	E	Ef
A: 0	-244.660	1.917	A: 0	-246.974	1.002	A: 0	-248.254	0.659
B: 0.149	-251.957	0.341	B: 0.25	-244.867	1.324	B: 0.25	-246.903	0.827
C: 0.25	-251.961	0.340	C: 0.297	-251.064	0.3776	C: 0.351	-238.349	1.894
D: 0.351	-244.656	1.918	D: 0.5	-251.062	0.3779	D: 0.446	-240.662	1.605
E: 0.5	-244.656	1.918	E: 0.703	-244.866	1.324	E: 0.5	-248.2597	0.658
F: 0.649	-251.949	0.343	F: 0.75	-246.972	1.003	F: 0.75	-246.902	0.827
G: 0.75	-251.981	0.336				G: 0.851	-238.341	1.895
H: 0.851	-244.661	1.919				H: 0.946	-248.2598	0.658

Fig.S2. The initial adsorption sites for relevant species (OH*, O* and OOH*) during OER on Ag_3PO_4 (100) (a-c), (110) (d-f) and (111) (g-i) surfaces.

Fig.S4. Partial DOS of the Ag₃PO₄ (110) surface.

Fig.S5. Partial DOS of the Ag_3PO_4 (111) surface.

Fig. S6. Total DOS of (111) surface (TDOS) and partial DOS of [PO3] unit on the top layer of (111) surface

Fig. S7. The free energies of the intermediates on the Ag_3PO_4 surfaces following mechanism I at pH = 0 (a), and pH=14 (b).