Supplementary Information

Chroman-4-one and pyrano[4, 3-b]chromenone derivatives from the mangrove endophytic fungus *Diaporthe phaseolorum* SKS019

Hui Cui,^a Meng Ding,^a Dane Huang,^b Zhengrui Zhang,^a Huiting Liu,^a Hongbo Huang, *^c and Zhigang She^{*a}

^a School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

^b School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China.

^c CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong.
 Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology,
 Chinese Academy of Sciences, Guangzhou 510301, China.

* To whom correspondence should be addressed. Tel/Fax: +86-20-34066449 (H. H.);
+86-20-84113356 (Z. S.). E-mail: <u>huanghb@scsio.ac.cn</u> (H. H.); <u>cesshzhg@sysu.edu.cn</u>
(Z. S.).

Contents

Figure S1 HRESIMS of diaporchromanone A (1) Figure S2 ¹H NMR spectrum (500 MHz, CDCl₃) of diaporchromanone A (**1**) Figure S3 ¹³C NMR spectrum (125 MHz, CDCl₃) of diaporchromanone A (1) Figure S4 DEPT NMR spectrum (125 MHz, $CDCl_3$) of diaporchromanone A (1) Figure S5 ¹H-¹H COSY spectrum (500 MHz, CDCl₃) of diaporchromanone A (**1**) Figure S6 HSQC spectrum (500 MHz, CDCl₃) of diaporchromanone A (1) Figure S7 HMBC spectrum (500 MHz, CDCl₃) of diaporchromanone A (1) Figure S8 HRESIMS of diaporchromanone B (2) Figure S9 ¹H NMR spectrum (500 MHz, CDCl₃) of diaporchromanone B (**2**) Figure S10¹³C NMR spectrum (125 MHz, CDCl₃) of diaporchromanone B (2) Figure S11 ¹H-¹H COSY spectrum (500 MHz, CDCl₃) of diaporchromanone B (2) Figure S12 HSQC spectrum (500 MHz, CDCl₃) of diaporchromanone B (2) Figure S13 HMBC spectrum (500 MHz, CDCl₃) of diaporchromanone B (2) Figure S14 HRESIMS of diaporchromanone C (3) Figure S15 ¹H NMR spectrum (500 MHz, CDCl₃) of diaporchromanone C (3) Figure S16 ¹³C NMR spectrum (125 MHz, CDCl₃) of diaporchromanone C (3) Figure S17 ¹H-¹H COSY spectrum (500 MHz, CDCl₃) of diaporchromanone C (**3**) Figure S18 HSQC spectrum (500 MHz, CDCl₃) of diaporchromanone C (3) Figure S19 HMBC spectrum (500 MHz, CDCl₃) of diaporchromanone C (3) Figure S20 HRESIMS of diaporchromanone D (4) Figure S21 ¹H NMR spectrum (500MHz, CDCl₃) of diaporchromanone D (4) Figure S22 ¹³C NMR spectrum (125 MHz, CDCl₃) of diaporchromanone D (4) Figure S23 ¹H-¹H COSY spectrum (500 MHz, CDCl₃) of diaporchromanone D (4) Figure S24 HSQC spectrum (500 MHz, CDCl₃) of diaporchromanone D (4) Figure S25 HMBC spectrum (500 MHz, CDCl₃) of diaporchromanone D (4) Figure S26HRESIMS of (–)-phomopsichin A (5a) Figure S27 ¹H NMR spectrum (500 MHz, acetone- d_6) of (–)-phomopsichin A (5a) Figure S28 ¹³C NMR spectrum (125 MHz, acetone- d_6) of (–)-phomopsichin A (**5a**) Figure S29 ¹H-¹H COSY spectrum (500 MHz, acetone- d_6) of (–)-phomopsichin A (5a) Figure S30 HSQC spectrum (500 MHz, acetone- d_6) of (–)-phomopsichin A (5a) Figure S31 HMBC spectrum (500 MHz, acetone- d_6) of (–)-phomopsichin A (**5a**) Figure S32 HRESIMS of (+)-phomopsichin B (6a) Figure S33 ¹H NMR spectrum (500MHz, CDCl₃) of (+)-phomopsichin B (**6a**) Figure S34 ¹³C NMR spectrum (125 MHz, CDCl₃) of (+)-phomopsichin B (**6a**) Figure S35 ¹H-¹H COSY spectrum (500 MHz, CDCl₃) of (+)-phomopsichin B (**6a**) Figure S36 HSQC spectrum (500 MHz, CDCl₃) of (+)-phomopsichin B (6a) Figure S37 HMBC spectrum (500 MHz, CDCl₃) of (+)-phomopsichin B (6a) Figure S38 HRESIMS of (±)-diaporchromone A (7) Figure S39 ¹H NMR spectrum (500MHz, CDCl₃) of (\pm) -diaporchromone A (7) Figure S40 ¹³C NMR spectrum (125 MHz, CDCl₃) of (±)-diaporchromone A (7)

Figure S41 HSQC spectrum (500 MHz, $CDCl_3$) of (±)-diaporchromone A (7) Figure S42 HMBC spectrum (500 MHz, $CDCl_3$) of (±)-diaporchromone A (7) Figure S43 ECD Calculation section

Figure S1 HRESIMS of diaporchromanone A (1)

Figure S3 ¹³C NMR spectrum (125 MHz, CDCl₃) of diaporchromanone A (1)

Figure S4 DEPT NMR spectrum (125 MHz, CDCl₃) of diaporchromanone A (1)

Figure S7 HMBC spectrum (500 MHz, CDCl₃) of diaporchromanone A (1)

7

Figure S8 HRESIMS of diaporchromanone B (2)

Figure S9 ¹H NMR spectrum (500 MHz, acetone- d_6) of diaporchromanone B (2)

Figure S10 ¹³C NMR spectrum (125 MHz, acetone- d_6) of diaporchromanone B (2)

Figure S11 ¹H- ¹H COSY spectrum (500 MHz, CDCl₃) of diaporchromanone B (2)

Figure S12 HSQC spectrum (500 MHz, CDCl₃) of diaporchromanone B (2)

Figure S13 HMBC spectrum (500 MHz, CDCl₃) of diaporchromanone B (2)

Figure S14 HRESIMS of diaporchromanone C (3)

Elemental Composition Report

Single M	ass Analysis		
		,	_

Tolerance =	5.0 PPM	/	DBE: min = -	1.5, max = 50	.0	
Elements Us	ed: C	: 0-50	H: 0-100	O: 0-50		
Mass	Calc. I	Mass	mDa	PPM	DBE	Formula
321.0970	321.0	974	-0.4	-1.2	8.5	$C_{16} H_{17} O_7$

Figure S16¹³C NMR spectrum (125 MHz, CDCl₃) of diaporchromanone C (3)

Figure S18 HSQC spectrum (500 MHz, CDCl₃) of diaporchromanone C (3)

13

Figure S19 HMBC spectrum (500 MHz, CDCl₃) of diaporchromanone C (3)

Single Mass Analysis

Tolerance =	5.0 PPM /	DBE: min =	= -1.5 <i>,</i> max = 50.0)	
Elements Us	sed: C: 0-50	H: 0-100	O: 0-50		
Mass	Calc. Mass	mDa	PPM	DBE	Formula
321.0973	321.0974	-0.1	-0.3	8.5	$C_{16} H_{17} O_7$

Figure S21 ¹H NMR spectrum (500 MHz, CDCl₃) of diaporchromanone D (4)

Figure S23 ¹H-¹H COSY spectrum (500 MHz, CDCl₃) of diaporchromanone D (4)

Figure S25 HMBC spectrum (500 MHz, CDCl₃) of diaporchromanone D (4)

Figure S28 ¹³C NMR spectrum (125 MHz, acetone- d_6) of (–)-phomopsichin A (5a)

Figure S29 ¹H-¹H COSY spectrum (500 MHz, acetone- d_6) of (–)-phomopsichin A (5a)

Figure S30 HSQC spectrum (500 MHz, acetone- d_6) of (–)-phomopsichin A (5a)

Figure S31 HMBC spectrum (500 MHz, acetone- d_6) of (–)-phomopsichin A (5a)

20

-0.6

9.5

 $C_{17}H_{17}O_8$

349.0921

349.0923

-0.2

Figure S33 ¹H NMR spectrum (500MHz, CDCl₃) of (+)-phomopsichin B (6a)

Figure S35 ¹H-¹H COSY spectrum (500 MHz, CDCl₃) of (+)-phomopsichin B (6a)

Figure S36 HSQC spectrum (500 MHz, CDCl₃) of (+)-phomopsichin B (6a)

Figure S37 HMBC spectrum (500 MHz, CDCl₃) of (+)-phomopsichin B (6a)

0-302 304 306 308 310 312 314 316 318 320 322 324 328 330 332 326 **Elemental Composition Report** Single Mass Analysis Tolerance = 4.0 PPM / DBE: min = -1.5, max = 50.0 Monoisotopic Mass, Even Electron Ions **Elements Used:** C: 0-50 H: 0-100 O: 0-50

---- m/z

334

519.0011 519.0010 -0.7 -2.2 C_{16}	319.0811	319.0818	-0.7	-2.2	$C_{16}H_{15}O_7$
--	----------	----------	------	------	-------------------

Figure S39 ¹H NMR spectrum (500MHz, CDCl₃) of (±)-diaporchromone A (7)

Figure S40 13 C NMR spectrum (125 MHz, CDCl₃) of (±)-diaporchromone A (7)

Figure S41 HSQC spectrum (500 MHz, CDCl₃) of (±)-diaporchromone A (7)

Figure S42 HSQC spectrum (500 MHz, CDCl₃) of (±)-diaporchromone A (7)

Figure 43 ECD Calculation section

Conformational analysis was initially performed using Confab^[1] at MMFF94 force field for one of the relative configurations for each compound. The conformers with Boltzmann-population of over 1% were chosen for ECD calculations. The energies and populations of all dominative conformers were provided in Table 1. The theoretical calculation was carried out using Gaussian 09^[2]. First, the chosen conformer was optimized at B3LYP/6-311+g(2d,p) level, and conformers with low Boltzmann-populations were filtered. Then, the remaining conformers were further optimized at B3LYP/6-311+g(2d,p) in MeOH using the IEFPCM polarizable conductor calculation model. The theoretical calculation of ECD was conducted in MeOH using Time-dependent Density functional theory (TD-DFT) at the CAM-B3LYP/6-311+g(2d,p)level for compound 1. Rotatory strengths for a total of 50 excited states were calculated. ECD spectra were generated using the program SpecDis 1.6 (University of Würzburg, Würzburg, Germany) and GraphPad Prism 5 (University of California San Diego, USA) from dipole-length rotational strengths by applying Gaussian band shapes with sigma = 0.2 eV ^[3]. All calculations were performed with the High-Performance Grid Computing Platform of Sun Yat-sen University.

Conform	Low energy structure	ΔΕ	Boltzmann Dist
ers		(Kcal/mol)	(%)
RS-1-a		0	63
RS-1-b		0.04	37

Table 1 The low energy conformers of the compound 1.

References

- 1. N. M. OBoyle, T. Vandermeersch, C. J. Flynn, A. R. Maguire and G. R. Hutchison. *J. Cheminformatics.*, 2011, 3, 3–8.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.

Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian Inc. Wallingford CT, 2010.

3. T. Bruhn, A. Schaumlffl, Y. Hemberger and G. Bringmann. *Chirality*, 2013, 25, 243–249.