Supplementary Information

Polydopamine Nanotubes-Templated Synthesis of TiO₂ and Its Photocatalytical Performance under Visible Light

Zehuan Wang, Jia Li, Feng Tang, Jun Lin and Zhaoxia Jin*

Department of Chemistry, Renmin University of China, Beijing, People's

Republic of China

1

Contents

1. Figures
Fig. S1 HRTEM image of TiO ₂ @C-PDA (400-1)
Fig. S2 X-ray diffraction patterns of TiO ₂ @PDA carbonized in argon for 3 hours at
different temperatures
Fig. S3 XPS survey spectra of TiO ₂ @C-PDA samples4
Fig. S4 Thermogravimetric (TGA) curves of TiO ₂ @C-PDA (400-1), TiO ₂ @C-PDA
(400-2) and TiO ₂ @C-PDA (400-3) collected under air condition
Fig. S5 $N_{\rm 2}$ adsorption–desorption isotherms and the BJH corresponding pore size
distribution curves of (a, b) $TiO_2@C-PDA$ (400-1, 2, 3)
Fig. S6 Zeta-potential of TiO ₂ and TiO ₂ @C-PDA (400-1,2,3) samples dispersed in
aqueous solution with different pH values
Fig. S7 UV-Vis spectra of MO in the presence of $TiO_2@C-PDA$ (400-2) under
visible light irradiation ($\lambda > 420$ nm)
Fig. S8 Cycling use of $TiO_2@C-PDA$ (400-2) for photocatalytic degradation of MO.
Fig. S9 X-ray diffraction patterns of TiO ₂ @C-PDA (400-2) before and after
photocatalytic experiment
2. Table
Table S1 Quantitative atomic ratios of all elements obtained from XPS analysis.

Fig. S1 HRTEM image of TiO₂@C-PDA (400-1).

Fig. S2 X-ray diffraction patterns of $TiO_2@PDA$ carbonized in argon for 3 hours at different temperatures, 600 (black line), 700 (blue line), 800 °C (red line). The temperature required for phase conversion of $TiO_2@PDA$ is up to 800 °C that indicates the high phase stability of $TiO_2@PDA$ hybrids.

Fig. S3 XPS spectra of TiO₂@PDA and TiO₂@C-PDA (400-1,2,3) samples.

Fig. S4 Thermogravimetric (TGA) curves of TiO₂@C-PDA (400-1), TiO₂@C-PDA (400-2) and TiO₂@C-PDA (400-3) collected under air condition. Below 150 °C, mass loss was caused by dehydration from the samples. The calculation range is from 150 to 800 °C, which is related with the release of nitrogen and carbon. Weight ratio of carbon (W _{carbon}) can be calculated through the following equation: Weight loss = W _{carbon} +W _{nitrogen}. The amount of doped nitrogen in the TiO₂@C-PDA (400-1,2,3) samples was calculated from the XPS data. Therefore, we can conclude that the contents of carbon cover layer in the TiO₂@C-PDA (400-1,2,3) samples are 3.80 wt%, 1.60 wt%, 1.09 wt%, respectively.

Fig. S5 (a) N_2 adsorption-desorption isotherms and (b) the BJH corresponding pore size distribution curves of TiO₂@C-PDA (400-1, 2, 3).

Fig. S6 Zeta-potential of TiO_2 and $TiO_2@C-PDA$ samples dispersed in aqueous solution with different pH values.

Fig S7. UV-Vis spectra of MO in the presence of TiO₂@C-PDA (400-2) under visible light irradiation ($\lambda > 420$ nm).

Fig S8. Cycling use of TiO₂@C-PDA (400-2) for photocatalytic degradation of MO.

Fig S9. X-ray diffraction patterns of $TiO_2@C-PDA$ (400-2) before (black line) and after (red line) photocatalytic experiments.

Samples	C (at%)	N (at%)	Ti (at%)	O (at%)
TiO ₂ @ PDA	69.44	8.93	5.86	15.77
TiO ₂ @C-PDA (400-1)	20.73	1.54	26.32	51.42
TiO ₂ @C-PDA (400-2)	21.11	1.24	25.43	52.21
TiO ₂ @C-PDA (400-3)	19.50	0.61	27.27	52.62

Table S1 Quantitative atomic ratios of all elements obtained from XPS analysis.