Supplementary Information

Bicyclic ammonium ionic liquids as dense hypergolic fuels

Yutao Yuan,^{a,b} Yanqiang Zhang,^a* Long Liu, Nianming Jiao,^{a,b} Kun Dong,^a Suojian Zhang^a*

- ^a Division of Ionic Liquids and Green Engineering, Institute of Process
 Engineering, Chinese Academy of Sciences, Beijing 100190, China. E-mail:
 yqzhang@ipe.ac.cn, sjzhang@ipe.ac.cn; FAX: +86-10-82544875
- ^b School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Contents

- Table S1.Bond lengths [Å] for 15b
- Table S2.Bond angles [°] for 15b
- Table S3. Torsion angles [°] for 15b
- Scheme S1. Isodesmic reactions for calculating the heat of ABCO-based cations
- Scheme S2. Isodesmic reactions for calculating the heat of DABCO-based cations
- Figure S1. DSC curves of 12b and 15a

Figure S2. Ignition delay times recorded by a high-speed camera (1000 frames s⁻¹) of DABCObased ionic liquids

Figure S3. Ignition delay times recorded by a high-speed camera (1000 frames s⁻¹) of ABCObased ionic liquids

N (2) – C (7)	1.500(2)
N (2) – C (5)	1.512(2)
N (2) – C (3)	1.514(2)
N (2) – C (1)	1.514(2)
C (7) – C (8)	1.468(3)
C (4) – C (3)	1.535(3)
C (5) – C (6)	1.542(3)
N (3) – C (8)	1.144(3)
C (1) – C (2)	1.540(3)
C (10) – N (6)	1.160(3)
C (10) – N (4)	1.320(3)
C (9) – N (5)	1.160(3)
C (9) – N (4)	1.309(3)

 $Table \ S1. \quad \text{Bond lengths} \ [\text{\AA}] \ for \ 15b$

Table S2.Bond angles [°] for $15b^a$

N(1) - C(4) - C(3)	111.72(15)		
N(2) - C(5) - C(6)	107.92(15)		
N(2) - C(3) - C(4)	108.36(15)		
N(1) - C(6) - C(5)	111.90(15)		
N(2) - C(1) - C(2)	108.36(14)		
N(3) - C(8) - C(7)	179.8(2)		
N(1) - C(2) - C(1)	111.46(15)		
N(6) - C(10) - N(4)	173.5(2)		
N(5) - C(9) - N(4)	173.3(2)		
C(9) - N(4) - C(10)	119.94(17)		
C(6) - N(1) - C(4)	108.68(15)		
C(2) - N(1) - C(4)	109.14(15)		
C(2) - N(1) - C(6)	108.25(15)		
C(7) - N(2) - C(5)	110.71(14)		
C(7) - N(2) - C(3)	111.09(14)		
C(7) - N(2) - C(1)	108.49(14)		
C(3) - N(2) - C(5)	108.90(14)		
C(3) - N(2) - C(1)	109.16(15)		
C(1) - N(2) - C(5)	108.43(15)		
C(8) - C(7) - N(2)	111.44(15)		
^a Symmetry transformations used to generate equivalent atoms			

^{*a*} Symmetry transformations used to generate equivalent atoms

Table S3.Torsion angles [°] for 15b

C(5) - N(2) - C(7) - C(8)	-65.5(2)
C(3) - N(2) - C(7) - C(8)	55.7(2)
C(1) - N(2) - C(7) - C(8)	175.58(17)
C(2) - N(1) - C(4) - C(3)	-54.8(2)
C(6) - N(1) - C(4) - C(3)	63.7(2)
C(7) - N(2) - C(5) - C(6)	-173.94(15)
C(3) - N(2) - C(5) - C(6)	63.6(2)
C (1) - N (2) - C (5) - C (6)	-55.0(2)
C(7) - N(2) - C(3) - C(4)	-177.35(16)
C(5) - N(2) - C(3) - C(4)	-55.1(2)
C(1) - N(2) - C(3) - C(4)	63.1(2)
N(1) - C(4) - C(3) - N(2)	-7.5(2)
C(2) - N(1) - C(6) - C(5)	64.4(2)
C(4) - N(1) - C(6) - C(5)	-54.6(2)
N(2) - C(5) - C(6) - N(1)	-7.7(2)
C(7) - N(2) - C(1) - C(2)	-175.79(17)
C(5) - N(2) - C(1) - C(2)	63.8(2)
C(3) - N(2) - C(1) - C(2)	-54.6(2)
N(2) - C(7) - C(8) - N(3)	-151(100)
C(6) - N(1) - C(2) - C(1)	-55.2(2)
C(4) - N(1) - C(2) - C(1)	63.6(2)
N(2) - C(1) - C(2) - N(1)	-7.5(2)
N(5) - C(9) - N(4) - C(10)	161.5(19)
N(6) - C(10) - N(4) - C(9)	-176(2)

Scheme S1. Isodesmic reactions for calculating the heat of ABCO-based cations

Scheme S2. Isodesmic reactions for calculating the heat of DABCO-based cations

Figure S1. DSC curves of 12b and 15a

Figure S2. Ignition delay times recorded by a high-speed camera (1000 frames s⁻¹) of DABCObased ionic liquids

Figure S3. Ignition delay times recorded by a high-speed camera (1000 frames s⁻¹) of ABCObased ionic liquids