Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Steam-Assisted Transformation of Natural Kaolin to Hierarchical
 ZSM-11 using Tetrabutylphosphonium Hydroxide as Structure
 Directing Agent: Synthesis, Structural characterization and Catalytic
 Performance in Methanol-to-Aromatics Reaction

5 Zhenhao Wei,^a Kake Zhu,^a Lanyu Xing,^a Fan Yang,^a Yunsheng Li,^a Yarong Xu,^b Xuedong Zhu^{a*}

6 ^aUNILAB, State Key Lab of Chemical Engineering, School of Chemical Engineering, East China

7 University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

8 ^bResearch Institute of Urumchi Petrochemical Company, PetroChina Company Limited, Urumchi
9 830019, China

10 *Corresponding author: Tel: 86-21-64252386; Fax: 86-21-64252386; E-mail:
11 xdzhu@ecust.edu.cn

12 Supplementary Methods

ZSM-5/11 intergrowth zeolite was obtained using the same procedure of synthesizing ZSM14 11-K with the aid of the tetrabutylammonium hydroxide (TBAOH, 40 wt%, Aladdin) as SDA
15 instead of TBPOH.

16 Supplementary Figures and Tables

17

Fig. S1 SEM images of LMK

Fig. S2 TEM images of ZSM-11-K

Fig. S3 (a) XRD pattern, (b) enlarged 2 θ region from 20°-27°, and (c) enlarged 2 θ region from 43°-47°.

26

Table S1 Chemical composition of kaolin and LMK^a

Composition (wt%)	SiO ₂	Al_2O_3	Na ₂ O	K_2O	Fe ₂ O ₃
kaolin	55.3	42.5	0.09	0.42	0.70
LMK	95.3	3.4	0.06	0.24	0.09

27 ^a The data were determined by XRF with a Shimadzu Model XRF-1800 instrument.

Besides the characteristic diffraction peaks of ZSM-11, ZSM-5/11 exhibited the (421), (133) and (0,10,0) peaks belong to ZSM-5 (Fig. S3). It suggested that ZSM-5/11 was intergrowths of ZSM-11 and ZSM-5.^{1, 2} This should be attributed to the Na⁺ in LMK (Table S1). As the compresence of Na⁺ could direct the formation of competing ZSM-5 phase, resultantly, a ZSM-11/ZSM-5 intergrowth is often obtained.

33

Table S2 Physical properties of kaolin and LMK.

_	Sample	Si/Al ^a	$S_{\rm BET}{}^{\rm b}$ (m ² /g)	$S_{\rm meso}{}^{ m c}$ (m ² /g)	$V_{\rm total}^{\rm d}$ (cm ³ /g)	$V_{\rm micro}^{\rm c}$ (cm ³ /g)	$V_{\rm meso}^{\rm e}$ (cm ³ /g)
_	kaolin	1.1	29	-	0.16	-	-
	LMK	23.5	365	325	0.47	0.03	0.44

^a Determined by XRF with a Shimadzu Model XRF-1800 instrument. ^b BET method. ^c *t*-plot method. ^d Volume adsorbed at $p/p_0 = 0.99$. ^c $V_{\text{meso}} = V_{\text{total}} - V_{\text{micro}}$.

Kaolin showed the low S_{BET} of 29 m²/g and a Si/Al ratio close to 1, which was consistent with several research groups.³⁻⁵ The Si/Al ratio was increased from 1.1 to 23.5 for kaolin by acid leaching. Moreover, the LMK exhibited high S_{BET} of 365 m²/g and rich V_{meso} of 0.44 cm³/g. Notably, it has been proposed that acid leaching mainly resulted in dealumination of kaolin and hence created mesopores on kaolin.^{6, 7}

Sampla	Acidity by strength ^a (µmol/m ²)			Acidity by type ^b (µmol/m ²)		
Sample	SAS	WAS	Total	LAS	BAS	Total
ZSM-11-C	2.144	1.619	3.763	0.800	1.146	1.946
ZSM-11-K	1.320	1.379	2.708	0.502	1.120	1.622

42 ^a The concentration of strong acid sites (C_{SAS}) and weak acid sites (C_{WAS}) determined by NH₃-

43 TPD.

- 44 b The concentration of Lewis acid sites (C_{LAS}) and Brønsted acid sites (C_{BAS}) calculated by Py-IR
- 45 after evacuation at 350 $^{\circ}$ C.

46 **References**

- 47 1 M. Conte, B. Xu, T. E. Davies, J. K. Bartley, A. F. Carley, S. H. Taylor, K. Khalid and G. J.
- 48 Hutchings, Micropor. Mesopor. Mat., 2012, 164, 207-213.
- 49 2 G. A. Jablonski, L. B. Sand and J. A. Gard, Zeolites, 1986, 6, 396-402.
- 50 3 Z. Shu, T. Li, J. Zhou, Y. Chen, Z. Sheng, Y. Wang and X. Yuan, Appl. Clay Sci., 2016, 123,
 51 76-82.
- 52 4 F. Pan, X. Lu, Y. Wang, S. Chen, T. Wang and Y. Yan, *Mater. Lett.*, 2014, 115, 5-8.
- 53 5 E. Mohiuddin, Y. M. Isa, M. M. Mdleleni, N. Sincadu, D. Key and T. Tshabalala, Appl. Clay
- 54 Sci., 2016, **119**, 213-221.
- 55 6 W. Aguilar-Mamani, G. García, J. Hedlund and J. Mouzon, SpringerPlus, 2014, 3, 292.
- 56 7 S. M. Holmes, S. H. Khoo and A. S. Kovo, Green Chem., 2011, 13, 1152-1154.