Electronic Supplementary Information

Generation of radical species in CVD grown pristine and N-doped solid carbon spheres using H₂ and Ar as carrier gases

Bridget K. Mutuma^a, Boitumelo J. Matsoso^a, Kamalakannan Ranganathan^a, Jonathan M. Keartland^b, Daniel Wamwangi^b and Neil J. Coville^a*

^a DST-NRF Centre of Excellence in Strong Materials and Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, WITS 2050, Johannesburg, South Africa

^b DST-NRF Centre of Excellence in Strong Materials and Materials Physics Research Institute, School of Physics, University of Witwatersrand, WITS 2050, Johannesburg, South Africa

Corresponding author:

Fax: +27+11+ 717+ 6749; E-mail address: neil.coville@wits.ac.za (N. Coville)

Surface area analysis

The N_2 adsorption and desorption isotherms of the solid carbon spheres were taken at 77K using a Micromeritics Tristar 3000 instrument. About 0.2 g of each sample was degassed at 250 °C in N_2 for 4 h. The specific surface area was calculated by the BET method from the N_2 adsorption data.

Fourier Transform infrared spectra analysis

The FTIR spectra of the post N-doped CSs are presented in Fig. S2. For all the spheres, small peaks due to C-H bending and C-C modes¹ were observed between 835 cm⁻¹ and 1110 cm⁻¹ while the C-H stretching modes were observed between 2700 cm⁻¹ to 3000 cm⁻¹, as well as the C=C bonds observed at $(1450 \text{ cm}^{-1} - 1580 \text{ cm}^{-1})^1$ and CO₂ modes observed at $(2200 \text{ cm}^{-1} - 2500 \text{ cm}^{-1})^1$. Nitrogen incorporation in the CSs was confirmed by the appearance of C-N (at 1242 cm⁻¹ and 1238 cm⁻¹), C=N (2050 cm⁻¹ - 2120 cm⁻¹)² stretching modes and N-H bending modes (1561 cm⁻¹ - 1580 cm⁻¹) in both the NCSs-Ar and NCSs-H₂ spheres.

Figure S1. The N₂- adsorption and desorption isotherms of pristine and post N-doped CSs; (a) synthesized in H_2 and (b) synthesized in Ar, respectively.

Figure S2. The FTIR spectra of the NCSs-H $_2$ and NCSs-Ar spheres.

Material	Decomposition temperature (°C)				
CSs-H ₂	717				
NCSs-H ₂	453, 560, 593				
CSs-Ar	640				
NCSs-Ar	460, 635				

Table S1.	TGA	results t	for 1	the	pristine	and	N-do	ped	CSs

Material	BET surface area (m ² /g)	ESR Line width (G)
CSs-H ₂	9.2 ± 0.1	0.54 ± 0.01
NCSs-H ₂	7.2 ± 0.2	0.78 ± 0.01
CSs-Ar	6.3 ± 0.4	1.83 ± 0.01
NCSs-Ar	10.5 ± 0.1	0.61 ± 0.01

Table S2. Effect of carrier gas and post N-doping on the surface areas and ESRline width (peak to peak distance) of the CSs

References

- 1. G. Socrates, *Infrared and Raman characteristic group frequencies: tables and charts*, John Wiley & Sons, 2004.
- S. Silva, J. Robertson, G. Amaratunga, B. Rafferty, L. Brown, J. Schwan, D. Franceschini and G. Mariotto, *Journal of applied physics*, 1997, **81**, 2626-2634.