Colloidal Synthesis and Magnetic Properties of Anisotropic-Shaped Spinel CuCr₂Se₄ Nanocrystals

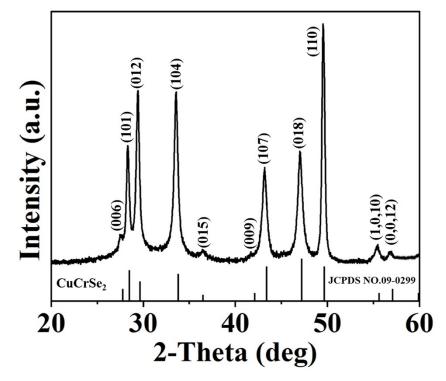
Chao Pang,^{a,b†} Ruiqiang Yang,^{a†} Amit Singh,^b Hanjiao Chen,^c Michael K. Bowman,^c Ningzhong Bao,^a Liming Shen,^{a*} and Arunava Gupta^{b,c*}

^a State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China.

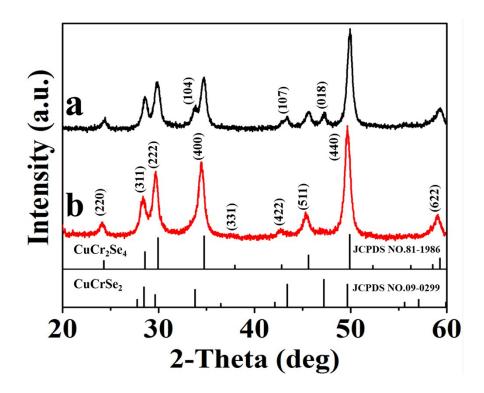
^b Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, United States.

^c Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, United States.

[†] These authors contributed equally to this work.


* Corresponding authors.

E-mail: lshen@njtech.edu.cn; agupta@mint.ua.edu.


NMR and Mass data:

The resulting compound, **TOASe**, was characterized by ¹H NMR spectroscopy and mass spectroscopy, and was consistent with the proposed structure.

Mass spectrum: (FAB positive) m/z, 242 [M-Se-C₈H₁₇+2H]⁺.

Fig. S1 XRD pattern of nonmagnetic phase CuCrSe₂ with a reaction temperature of 250 °C. Inset shows the standard XRD stick pattern of CuCrSe₂ (JCPDS No. 09-0299).

Fig. S2 XRD patterns of synthesized CuCr₂Se₄ nanocrystals as a function of reaction time with a reaction temperature of 300 °C. (a) XRD pattern of a mixture of CuCr₂Se₄ and nonmagnetic phase CuCrSe₂ with very short reaction time (5 mins). (b) XRD pattern of pure CuCr₂Se₄ nanocrystals with longer reaction time (20 mins). Inset shows the standard XRD stick patterns of bulk CuCr₂Se₄ (JCPDS No. 81-1986) and nonmagnetic phase CuCrSe₂ (JCPDS No. 09-0299).

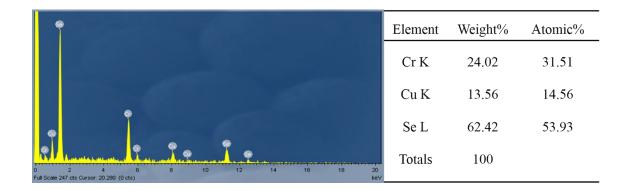
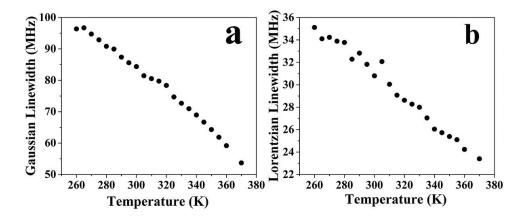



Fig. S3 EDX spectrum and elemental composition of the anisotropic-shaped $CuCr_2Se_4$ nanocrystals.

Fig. S4 Fitting parameters for CW EPR spectra. (a) Gaussian linewidth as a function of temperature. (b) Lorentzian linewidth as a function of temperature.