Supporting information

Manipulation of Monomer-Dimer Transformation of a Heptamethine Cyanine Ligand: Near Infrared Chromogenic Recognition of Hg²⁺

Xia Gao^a, Weidong Wu^a, Jinyan Xi, Hong Zheng^{b*}

^a School of Public Health, Xinxiang Medical University,453003, Xinxiang, PR China

^b Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen , PR China

E-mail address: hzheng@xmu.edu.cn

CONTENTS

Fig.S1. ¹ H NMR of compound 2 .	2	
Fig.S2. 13 C NMR of compound 2 .	3	
Fig.S3. ESI mass spectra of compound 2 .		4
Fig.S4. ¹ H NMR of compound CyL.	5	
Fig.S5. ¹³ C NMR of compound CyL.		6
Fig.S6. ESI mass spectra of compound CyL.		7
Fig.S7. Competitive absorbance response of CyL with Hg^{2+}		7
Fig.S8 Absorbance titrations of CyL with Hg ²⁺		8
Fig.S9. ESI mass spectra of CyL -Hg ²⁺		8

Fig. S1 ¹H NMR spectra of compound **2** (d_6 -DMSO, 400 MHz). 3.36 (s, H₂O), 2.51(S, DMSO residual peak).

Fig. S2 ¹³C NMR spectra of compound 2 (d₆-DMSO, 100 MHz)

Fig. S3 ESI mass spectra of compound 2.

Fig. S4 ¹H NMR spectra of CyL (d_6 -DMSO, 400 MHz). 3.36 (s, H_2O), 2.51(S, DMSO residual peak).

Fig. S5 ¹³C NMR spectra of CyL (d₆-DMSO, 100 MHz)

Fig. S6 ESI mass spectra of compound CyL.

Fig. S7 The absorbance response of **CyL** to Hg^{2+} (1.0×10⁻⁵ M) in the presence of competitive metal ions (From left to right: no competitive cation(none), Li⁺(100 equiv.), Na⁺(100 equiv.), K⁺(100 equiv.), Cr³⁺(40 equiv.), Mn²⁺(40 equiv.), Co²⁺(40 equiv.), Pb²⁺(40 equiv.), Zn²⁺(40 equiv.), Cd²⁺(40 equiv.), Fe³⁺(40 equiv.), Ni²⁺(40 equiv.), Al³⁺(40 equiv.), Ca²⁺(100 equiv.), Ba²⁺(100 equiv.), Cu²⁺(20 equiv.).

Fig S8 Absorbance titrations of **CyL** with Hg²⁺ in aqueous solution of pH 4.00 at 760 nm. (a) $[CyL] = 1.0 \times 10^{-5} \text{ M}$; (b) $[CyL] = 2.0 \times 10^{-5} \text{ M}$

Fig. S9 ESI mass spectra of the reaction products of CyL with Hg^{2+} in pH 4.00 acetate buffer solution. m/z (741.7): $[2CyL-2I+Hg-2H]^{2+}$ for $Hg(CyL)_2$ complex; m/z (642.3): $[CyL-I]^+$ for CyL monomer.